Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: I. Drop-weight tests

2015 ◽  
Vol 135 ◽  
pp. 94-112 ◽  
Author(s):  
Mingxin Wu ◽  
Zhenfu Chen ◽  
Chuhan Zhang
2014 ◽  
Vol 626 ◽  
pp. 311-316 ◽  
Author(s):  
Yi Fei Hao ◽  
Hong Hao ◽  
Gang Chen

Concrete is a brittle material, especially under tension. Intensive researches have been reported to add various types of fibres into concrete mix to increase its ductility. Recently, the authors proposed a new type of steel fibre with spiral shape to reinforce concrete material. Laboratory tests on concrete cylinder specimens demonstrated that compared to other fibre types such as the hooked-end, deformed and corrugated fibres the new fibres have larger displacement capacity and provide better bonding with the concrete. This study performs drop-weight impact tests to investigate the behaviour of concrete beams reinforced by different types of steel fibres. The quasi-static compressive and split tensile tests were also conducted to obtain the static properties of plain concrete and steel fibre reinforced concrete (FRC) materials. The quasi-static tests were carried out using hydraulic testing machine and the impact tests were conducted using an instrumented drop-weight testing system. Plain concrete and concrete reinforced by the commonly used hooked-end steel fibres and the proposed spiral-shaped steel fibres were tested in this study. The volume dosage of 1% fibre was used to prepare all FRC specimens. Repeated drop-weight impacts were applied to the beam specimens until total collapse. A 15.2 kg hard steel was used as the drop-weight impactor. A drop height of 0.5 m was considered in performing the impact tests. The force-displacement relations and the energy absorption capabilities of plain concrete and FRC beams were obtained, compared and discussed. The advantage and effectiveness of the newly proposed spiral-shaped steel fibres in increasing the performance of FRC beam elements under impact loads were examined.


2014 ◽  
Vol 564 ◽  
pp. 406-411
Author(s):  
Parnia Zakikhani ◽  
R. Zahari ◽  
Mohamed Thariq Hameed Sultan

Impact simulation with finite element analysis is an appropriate manner to reduce the cost and time taken to carry out an experimental testing on a component. In this study, the impact behavior of the composite hemispherical shell induced by low velocity impact is simulated in ABAQUS software with finite element method. To predict the responses of Kevlar fabric/polyester, glass fabric/polyester and carbon fabric/polyester in the form of a hemisphere, once as one layer and then as a three-layered composite under applied force by an anvil. The sequences of layers are changed, to investigate and compare the occurred alternations in the amount of energy absorption, impact force and specific energy absorption (SEA). The comparison of results showed that the highest and the lowest quantity of energy absorption and SEA belong to Carbon/Glass/Kevlar (CGK) and Kevlar/Carbon/Glass (KCG) respectively.


This paper investigates the drop weight impact behavior of glass fibre-aluminum (GFRP-AL FML) composites. The purpose of the research is to study the effect of different type of glass fibres architecture, i.e woven and unidirectional, with existence Al sheet in the middle of the glass fibre reinforced polymer composites (GFRP). The impact behaviour of these GFRP and GFRP-AL FMLs was investigated using a drop-weight impact tower at three different energy level, which are 10J, 20J and 30J. The Load - deflection curves were used to measure the absorbed energy. The results showed that the woven type of GFRP exhibited the highest peak load but lowest deflection thus reducing the total energy absorbed. In contrast, the unidirectional types of GFRP possessed the lowest peak load and highest deflection, which results in the highest energy absorbed. For the GFRP-AL FML composites, the energy absorbed obtained almost similar for both woven and unidirectional types. This is may be due to poor adhesion between the GFRP and Al sheet, thus make both materials separated and delaminated when subjected to impact load. The optical analysis proved that the GFRP-AL debonding, fibres breakage, fibres delamination and matrix cracking occurred during the impact loading. These are the main impact energy –absorption mechanisms involved during the test.


2020 ◽  
Vol 20 (5) ◽  
pp. 185-194
Author(s):  
NamHyuk Kim ◽  
YunSuk Kang ◽  
HyunUng Bae ◽  
KyungJu Kim ◽  
NamHyoung Lim

In Korea, to prepare for unexpected accidents caused by human errors and natural disasters that cannot be completely prevented, a protective wall (a type of side-structure) against derailed trains has been installed on high-speed railway bridges as one of the physical measures to mitigate the associated damage. However, taking the geometric aspects of a domestic railway bridge's super structure into consideration, such a protective wall is not appropriate, and the corresponding protective performance does not provide adequate security. Hence, a protective wall named Derailment Containment Provision (DCP) was newly developed and installed in the track gauge. In this study, to evaluate the impact resistance of the newly developed DCP, a drop weight experiment was conducted, and the impact behavior corresponding to a specific impact energy was analyzed.


2013 ◽  
Vol 18 (3) ◽  
pp. 502-510
Author(s):  
Engin Gücüyen ◽  
R. Erdem ◽  
Erkan Kantar ◽  
Muhiddin Bağcı

Sign in / Sign up

Export Citation Format

Share Document