Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation

Author(s):  
Karlo Seleš ◽  
Zoran Tomić ◽  
Zdenko Tonković
2021 ◽  
Vol 806 ◽  
pp. 140860
Author(s):  
Di Xie ◽  
Zongyang Lyu ◽  
Yuan Li ◽  
Peter K. Liaw ◽  
Huck Beng Chew ◽  
...  

2005 ◽  
Vol 473-474 ◽  
pp. 189-194
Author(s):  
Zilia Csomós ◽  
János Lukács

E-glass fibre reinforced polyester matrix composite was investigated, which was made by pullwinding process. Round three point bending (RTPB) specimens were tested under quasi-static and mode I cyclic loading conditions. Load vs. displacement (F-f), load vs. crack opening displacement (F-v) and crack opening displacement range vs. number of cycles (ΔCOD-N) curves were registered and analysed. Interfacial cracks were caused the final longitudinal fracture of the specimens under quasi-static and cyclic loading conditions.


Author(s):  
Zipeng Han ◽  
Gregory N. Morscher ◽  
Emmanuel Maillet ◽  
Manigandan Kannan ◽  
Sung R. Choi ◽  
...  

Electrical resistance (ER) is a relatively new approach for real-time monitoring and evaluating damage in SiC/SiC composites for a variety of loading conditions. In this study, ER of woven silicon carbide fiber-reinforced silicon carbide composite systems in their pristine and impacted state were measured under cyclic loading conditions at room and high temperature (1200C). In addition, modal acoustic emission (AE) was also monitored, which can reveal the occasion of matrix cracks and fiber. ER measurement and AE technique are shown in this study to be useful methods to monitor damage and indicate the failure under cyclic loading. Based on the slope of the ER evolution, an initial attempt has been made to develop a method allowing a critical damage phase to be identified. While the physical meaning of the critical point is not yet clear, it has the potential to allow the failure to be indicated at its early stage.


1975 ◽  
Vol 20 ◽  
pp. 261-266 ◽  
Author(s):  
D.K. Shetty ◽  
T. Mura ◽  
M. Meshii

2014 ◽  
Vol 8 (1) ◽  
pp. 44-48
Author(s):  
Grzegorz Mieczkowski ◽  
Krzysztof Molski

Abstract The increasing application of composite materials in the construction of machines causes strong need for modelling and evaluating their strength. There are many well known hypotheses used for homogeneous materials subjected to monotone and cyclic loading conditions, which have been verified experimentally by various authors. These hypotheses should be verified also for composite materials. This paper provides experimental and theoretical results of such verifications for bimaterial structures with interfacial cracks. Three well known fracture hypotheses of: Griffith, McClintock and Novozhilov were chosen. The theoretical critical load values arising from each hypotheses were compared with the experimental data including uni and multi-axial loading conditions. All tests were carried out with using specially prepared specimens of steel and PMMA.


Author(s):  
Piotr Bednarz ◽  
Jaroslaw Szwedowicz

The Haensel damage model correlates lifetime of a component until crack initiation to the dissipated and stored energy in the material during cyclic loading. The crack initiation is influenced by mean stresses. The Haensel damage model considers the mean stress effect by including compressive and tensile stresses in calculations of elastic strain energy during cyclic loading conditions. The goal of the paper is to extend the above model to predict crack propagation under large cyclic plasticity and non-proportional loading conditions. After voids initiation onset of necking, voids growth and linking takes place among them. During this process a mesocrack is created. This stage of fracture involves the same amount of released energy for new crack surface creation as dissipated energy for mesocrack initiation. The amount of dissipated and stored energy is related to the process zone size and to the number of cycles. Ilyushin’s postulate is used to calculate the amount of dissipated energy. In order to consider a contribution of tensile stresses only during loading to crack propagation, tensile/compressive split is performed for the stress tensor. One of the key drivers of this paper is to provide a straightforward engineering approach, which does not require explicit modelling of cracks. The proposed mathematical approach accounts for redistribution of stresses, strains and energy during crack propagation. This allows to approximate the observed effect of distribution of dissipated energy on the front of a crack tip. The developed approach is validated through FE (Finite Element) simulations of the Dowling and Begley experiment. The Haensel lifetime prediction of Dowling’s experiment is in good agreement with the experimental data and the explicit FE results. Finally, the proposed mathematical approach simplifies significantly the engineering effort for Nonlinear Fracture Mechanics lifetime prediction by avoiding the requirement to simulate real crack propagation using node base release methods, XFEM or remeshing procedures.


Sign in / Sign up

Export Citation Format

Share Document