Soil moisture response to water infiltration in a 1-D slope soil column model

2020 ◽  
Vol 267 ◽  
pp. 105482 ◽  
Author(s):  
Fawu Wang ◽  
Zili Dai ◽  
Iori Takahashi ◽  
Yuta Tanida
2017 ◽  
Vol 34 (4) ◽  
pp. 393
Author(s):  
Zhixiang Chen ◽  
Shunqun Li ◽  
Jinhong Xia ◽  
Kai Wang ◽  
Chao Gui

2016 ◽  
Author(s):  
Shanshui Yuan ◽  
Steven M. Quiring

Abstract. This study provides a comprehensive evaluation of soil moisture simulations in the Coupled Model Intercomparison Project Phase 5 (CMIP5) extended historical experiment (2003 to 2012). Soil moisture from in situ and satellite sources are used to evaluate CMIP5 simulations in the contiguous United States (CONUS). Both near-surface (0–10 cm) and soil column (0–100 cm) simulations from more than 14 CMIP5 models are evaluated during the warm season (April–September). Multi-model ensemble means and the performance of individual models are assessed at a monthly time scale. Our results indicate that CMIP5 models can reproduce the seasonal variability in soil moisture over CONUS. However, the models tend to overestimate the magnitude of both near-surface and soil-column soil moisture in the western U.S. and underestimate it in the eastern U.S. There are large variations in model performance, especially in the near-surface. There are significant regional and inter-model variations in performance. Results of a regional analysis show that in deeper soil layer, the CMIP5 soil moisture simulations tend to be most skillful in the southern U.S. Based on both the satellite-derived and in situ soil moisture, CESM1, CCSM4 and GFDL-ESM2M perform best in the 0–10 cm soil layer and CESM1, CCSM4, GFDL-ESM2M and HadGEM2-ES perform best in the 0–100 cm soil layer.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 26
Author(s):  
Marqués ◽  
Bienes ◽  
Ruiz-Colmenero

The wine captures grapes’ variety nature and vinification techniques, but other aspects of soil, climate and terrain are equally important for the terroir expression as a whole. Soil supplies moisture, nitrogen, and minerals. Particularly nitrogen obtained through mineralization of soil organic matter and water uptake are crucial for grape yield, berry sugar, anthocyanin and tannin concentration, hence grape quality and vineyard profitability. Different climatic conditions, which are predicted for the future, can significantly modify this relationship between vines and soils. New climatic conditions under global warming predict higher temperatures, erratic and extreme rainfall events, and drought spells. These circumstances are particularly worrisome for typical thin soils of the Mediterranean environment. This study reports the effect of permanent grass cover in vineyards to maintain or increase soil organic matter and soil moisture. The influence of natural and simulated rainfalls on soils was studied. A comparison between minimum tillage (MT) and permanent grass cover crop (GC) of the temperate grass Brachypodium distachyon was done. Water infiltration, water holding capacity, organic carbon sequestration and protection from extreme events, were considered in a sloping vineyard located in the south of Madrid, Spain. The MT is the most widely used cultivation method in the area. The tradition supports this management practice to capture and preserve water in soils. It creates small depressions that accumulate water and eventually improves water infiltration. This effect was acknowledged in summer after recent MT cultivation; however, it was only short-lived as surface roughness declined after rainfalls. Especially, intense rainfall events left the surface of bare soil sealed. Consequently, the effects depend on the season of the year. In autumn, a rainy season of the year, MT failed to enhance infiltration. On the contrary, B. distachyon acted as a physical barrier, produced more infiltration (22% increase) and fewer particles detachment, due to increased soil structure stability and soil organic matter (50% increase). The GC efficiently protected soil from high-intensity events (more than 2 mm min-1). Besides, soil moisture at 35 cm depth was enhanced with GC (9% more than tillage). On average, soil moisture in GC was not significantly different from MT. These effects of GC on soil conditions created local micro-environmental conditions that can be considered advantageous as a climate change adaptation strategy, because they improved water balance, maintained a sustainable level of soil organic matter, therefore organic nitrogen, all these factors crucial for improving wine quality.


2017 ◽  
Vol 53 (7) ◽  
pp. 5877-5898 ◽  
Author(s):  
Mathilde Maquin ◽  
Emmanuel Mouche ◽  
Claude Mügler ◽  
Marie-Claire Pierret ◽  
Daniel Viville
Keyword(s):  

2010 ◽  
Vol 46 (3) ◽  
pp. 309-325 ◽  
Author(s):  
C. THIERFELDER ◽  
P. C. WALL

SUMMARYConservation agriculture (CA) systems are based on minimal soil disturbance, crop residue retention and crop rotation. Although the capacity of rotations to break pest and disease cycles is generally recognized, other benefits of crop rotations in CA systems are seldom acknowledged and little understood. We monitored different conventional and CA cropping systems over the period from 2005 to 2009 in a multi-seasonal trial in Monze, southern Zambia. Both monocropped maize and different maize rotations including cotton and the green manure cover crop sunnhemp (Crotalaria juncea) were compared under CA conditions, with the aim of elucidating the effects of crop rotations on soil quality, soil moisture relations and maize productivity. Infiltration, a sensitive indicator of soil quality, was significantly lower on conventionally ploughed plots in all cropping seasons compared to CA plots. Higher water infiltration rate led to greater soil moisture content in CA maize treatments seeded after cotton. Earthworm populations, total carbon and aggregate stability were also significantly higher on CA plots. Improvements in soil quality resulted in higher rainfall use efficiency and higher maize grain yield on CA plots especially those in a two- or three-year rotation. In the 2007/08 and 2008/2009 season, highest yields were obtained from direct-seeded maize after sunnhemp, which yielded 74% and 136% more than maize in the conventionally ploughed control treatment with a continuous maize crop. Even in a two-year rotation (maize-cotton), without a legume green manure cover crop, 47% and 38% higher maize yields were recorded compared to maize in the conventionally ploughed control in the two years, respectively. This suggests that there are positive effects from crop rotations even in the absence of disease and pest problems. The overall profitability of each system will, however, depend on markets and prices, which will guide the farmer's decision on which, if any, rotation to choose.


2020 ◽  
Vol 21 (1) ◽  
pp. 143-159
Author(s):  
Christine M. Albano ◽  
Michael D. Dettinger ◽  
Adrian A. Harpold

AbstractAtmospheric rivers (ARs) significantly influence precipitation and hydrologic variability in many areas of the world, including the western United States. As ARs are increasingly recognized by the research community and the public, there is a need to more precisely quantify and communicate their hydrologic impacts, which can vary from hazardous to beneficial depending on location and on the atmospheric and land surface conditions prior to and during the AR. This study leverages 33 years of atmospheric and hydrologic data for the western United States to 1) identify how water vapor amount, wind direction and speed, temperature, and antecedent soil moisture conditions influence precipitation and hydrologic responses (runoff, recharge, and snowpack) using quantile regression and 2) identify differences in hydrologic response types and magnitudes across the study region. Results indicate that water vapor amount serves as a primary control on precipitation amounts. Holding water vapor constant, precipitation amounts vary with wind direction, depending on location, and are consistently greater at colder temperatures. Runoff efficiencies further covary with temperature and antecedent soil moisture, with precipitation falling as snow and greater available water storage in the soil column mitigating flood impacts of large AR events. This study identifies the coastal and maritime mountain ranges as areas with the greatest potential for hazardous flooding and snowfall impacts. This spatially explicit information can lead to better understanding of the conditions under which ARs of different precipitation amounts are likely to be hazardous at a given location.


Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 314
Author(s):  
Jing Zhang ◽  
Shaopeng Li

The installation of a traditional double-ring infiltrometer (DRI) into soil is difficult and time consuming. It results in reduced accuracy because of soil disturbance and water leakage along the gaps between the ring wall and the soil. In this study, a surface-positioned DRI (SPDRI) was suggested to improve measurement accuracy and convenience of the DRI. Laboratory experiments were conducted to evaluate performance of the method in terms of the influence of the lateral flow of water on the accuracy of infiltration rate, average vertical wetting front depth and saturated hydraulic conductivity. A cylindrical soil column was used to simulate the ideal ring infiltrometer (IRI) of the one-dimensional vertical infiltration process for comparison purposes. Experimental results indicated that the infiltration rates measured by the SPDRI and IRI were nearly identical, with maximum relative error (RE) of 18.75%. The vertical wetting front depth of the SPDRI was nearly identical to that of the IRI, with proportional coefficients of 0.97 and R2 > 0.95. Comparison of the soil saturated hydraulic conductivity with those from IRI indicated that the REs were 7.05–10.63% for the SPDRI. Experimental results demonstrated that the SPDRI could improve the measurement accuracy and facilitate the soil water infiltration measurement process.


2014 ◽  
Vol 641-642 ◽  
pp. 183-186
Author(s):  
Shu Yan ◽  
Juan Gao ◽  
Zhong Yuan Zhang ◽  
Feng Lin Zuo ◽  
Wei Hua Zhang

In order to relieve water shortage, many countries develop water-saving industries and increase water use rate of irrigation. The research on soil water infiltration has important effect on infiltration and runoff, as well as for irrigation. The study carried out in Liangping district of Chongqing by using double ring infiltration method and exploring the reasonable infiltration model in the study area. The relationship of initial soil moisture and irrigation coefficient was studied as well. The results showed that: the Kostiakov empirical formula could simulate the process of soil water infiltration properly. The soil infiltration rate of Liangping is 0.0320cm/min in the selected location.


2020 ◽  
Author(s):  
Judith Eeckman ◽  
Hélène Roux ◽  
Bertrand Bonan ◽  
Clément Albergel ◽  
Audrey Douniot

<p>The representation of soil moisture is a key factor for the simulation of flash flood in the Mediterranean region. The MARINE hydrological model is a distributed model dedicaded to flash flood simulation. Recent developments of the MARINE model lead to an improvement of the subsurface flow representation : on the one hand, the transfers through the subsurface take place in a homogeneous soil column based on the volumic soil water content instead of the water height. On the other hand, the soil column is divided into two layers, which represent respectively the upper soil layer and the deep weathered rocks. The aim of this work is to assess the performances of these new representations of the subsurface flow with respect to the soil saturation dynamics during flash flood events. The performances of the model are estimated with respect to three soil moisture products: i) the gridded soil moisture product provided by the LDAS-Monde assimilation chain. LDAS-Monde is based on the ISBA-a-gs land surface model and integrates high resolution spatial remote sensing data from the Copernicus Global Land Service for vegetation through data assimilation; ii) the upper soil moisture measurements taken from the SMOSMANIA observation network ; iii) The satellite derived surface soil moisture data from Sentinel1. The case study is led over two french mediterranean catchments impacted by flash flood events over the 2017-2019 period and where one SMOSMANIA station is available. Additionnal tests for the initialisation of MARINE water content for the two soil layers are assessed. Results show first that the dynamic of the soil moisture both provided by LDAS-Monde and simulated for the upper soil layer in MARINE are locally consistent with the SMOSMANIA observations. Secondly, the use of soil water content instead of water height to describe lateral flows in MARINE is cleary more relevant with respect to both LDAS-Monde simulations and SMOSMANIA stations. The dynamic of the deep layer moisture content also appears to be consistent with the LDAS-Monde product for deeper layers. However, the bias on these values strongly rely on the calibration of the new two-layers model. The opportunity of improving the two-layers model calibration is then discussed. Finally, the impact of the soil water content initialisation is shown to be significant mainly during the flood rising, and also to be dependent on the model calibration. In conclusion, the new developments presented for the representation of subsurface flow in the MARINE model appear to enhance the soil moisture simulation during flash floods, with respect to both the LDAS-Monde product and the SMOSMANIA observation network.</p>


2020 ◽  
Author(s):  
Roberto Passalacqua ◽  
Rossella Bovolenta ◽  
Bianca Federici ◽  
Alessandro Iacopino

<p>Soil water content is often a landslide’s trigger factor, in particular the shallow ones. Although there is no simple relationship between the water content into the soil and the hydraulic conditions of the slopes at the depths at which the landslides develop, the knowledge of the actual soil moisture is fundamental for the study of landslides, thus, it should be monitored.<br>The LAMP (LAndslide Monitoring and Predicting) system is employed in the INTERREG-ALCOTRA project called AD-VITAM. LAMP (Bovolenta et al., 2016) was yet formulated for the analysis and forecasting of landslides triggered by rain. It adopts a physically based Integrated Hydrological Geotechnical (IHG) model (Passalacqua et al., 2016) and is implemented in GIS. In this Project, the IHG model is fed by data measured using a Wireless Sensor Network (WSN), this formed by low-cost and self-sufficient sensors. The WSN may gather rainfall, temperature, surface’s displacement data (these by mass-market GNSS receivers in RTK) and, in this case, soil water content (by capacitive sensors).<br>The WaterScout SM100 capacitive sensors were lab-analyzed then, recognized as satisfactory, installed on-site together with their related equipment. These sensors connect to a “Sensor Pup”, which has four available channels; therefore, four sensors are installed at each node, at different depths from ground-level, in order to achieve a vertical soil-moisture profile and the rate of infiltration.<br>The selection of the most suitable spots for the water content soil-sensors’ installations depends on the presence of shallow soil layers and of the radio signal emission-reception’s too.<br>The sensors may be set up both in vertical or horizontal direction. In general, the vertical installation is preferable. This implies the creation of small adjacent vertical holes, each one reaching a different depth, where the sensors are singularly pushed. Alternatively, the horizontal one may be adopted, by the opening of a small trench where the sensors are manually inserted at different depths, along a quasi-vertical vertical line. The full contact between the soil and the sensors is always verified, immediately after the installation, using a directly connected FieldScout reader to any single sensor. Furthermore, it is necessary to protect the emerging cables and to avoid preferential ways for water infiltration along the wiring lines.<br>The monitoring networks, installed at the two Italian sites of Mendatica and Ceriana, are currently providing informations in real-time. The data acquired at five nodes, distributed at each of these two sites (40 sensors in total), are currently relayed on a specific web-portal by a GSM connected Retriever-Modem, marking the evolutions of soil moisture profiles at depths between 10 and 85 cm from ground level: these continuous data allow the analysis of the infiltration and evapotranspiration phenomena. Moreover, a correlation between the soil moisture contents and the local displacements is made possible. Finally, a specific calibration of the SM100 sensors’ in relation to the on-site soil types is in progress.</p>


Sign in / Sign up

Export Citation Format

Share Document