Swelling deformation of Gaomiaozi bentonite under alkaline chemical conditions in a repository

2020 ◽  
Vol 279 ◽  
pp. 105891
Author(s):  
Zhao Sun ◽  
Yong-gui Chen ◽  
Wei-min Ye ◽  
Yu-jun Cui ◽  
Qiong Wang
Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
J. Thieme ◽  
J. Niemeyer ◽  
P. Guttman

In soil science the fraction of colloids in soils is understood as particles with diameters smaller than 2μm. Clay minerals, aquoxides of iron and manganese, humic substances, and other polymeric materials are found in this fraction. The spatial arrangement (microstructure) is controlled by the substantial structure of the colloids, by the chemical composition of the soil solution, and by thesoil biota. This microstructure determines among other things the diffusive mass flow within the soils and as a result the availability of substances for chemical and microbiological reactions. The turnover of nutrients, the adsorption of toxicants and the weathering of soil clay minerals are examples of these surface mediated reactions. Due to their high specific surface area, the soil colloids are the most reactive species in this respect. Under the chemical conditions in soils, these minerals are associated in larger aggregates. The accessibility of reactive sites for these reactions on the surface of the colloids is reduced by this aggregation. To determine the turnover rates of chemicals within these aggregates it is highly desirable to visualize directly these aggregation phenomena.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 371-374 ◽  
Author(s):  
S. Araki ◽  
J. M. González ◽  
E. de Luis ◽  
E. Bécares

The viability of Parascaris equorum eggs was studied in two experimental pilot-scale high-rate algal ponds (HRAPs) working in parallel with 4 and 10 days hydraulic retention time respectively. Semi-permeable bags of cellulose (15000 daltons pore size) were used to study the effect of physico-chemical conditions on the survival of these helminth eggs. Three thousand eggs were used in each bag. Replicates of these bags were submerged for 4 and 10 days in the HRAPs and egg viability was compared with that in control bags submerged in sterile water. After 4 days exposure, 60% reduction in viability was achieved, reaching 90% after 10 days, much higher than the 16% and 25% found in the control bags for 4 and 10 days respectively. Ionic conditions of the HRAP may have been responsible for up to 50–60% of the egg mortality, suggesting that mortality due to the ionic environment could be more important than physical retention and other potential removal factors.


1993 ◽  
Vol 265 (2) ◽  
pp. H543-H552 ◽  
Author(s):  
Y. Yuan ◽  
W. M. Chilian ◽  
H. J. Granger ◽  
D. C. Zawieja

This study reports measurements of albumin permeability in isolated coronary venules. The isolated microvessel technique allows the quantification of transmural exchange of macromolecules under tightly controlled physical and chemical conditions. Transvenular exchange of albumin was studied in isolated coronary venules during alterations in filtration rate caused by changes in intravascular pressure. The apparent permeability coefficient of albumin (Pa) at an intraluminal pressure of 11 cmH2O was 3.92 +/- 0.43 x 10(-6) cm/s. Elevating intraluminal pressure to 16 and 21 cmH2O increased Pa to 5.13 +/- 0.57 x 10(-6) and 6.78 +/- 0.66 x 10(-6) cm/s, respectively. Calculation of the true diffusive permeability coefficient of albumin (Pd) at zero filtration rate was 1.54 x 10(-6) cm/s. The product of hydraulic conductance (Lp) and (1 - sigma), where sigma is the solute reflection coefficient, was 3.25 x 10(-7) cm.s-1 x cmH2O-1. At a net filtration pressure of 4-5 cmH2O, diffusion accounts for > 60% of total albumin transport across the venular wall. Transmural albumin flux is very sensitive to filtration rate, rising 6.7% for each cmH2O elevation of net filtration pressure. At 11 cmH2O net filtration pressure, convection accounts for nearly 70% of net albumin extravasation from the venular lumen. We suggest that the isolated coronary venule is a suitable preparation for the study of solute exchange in the heart.


Genetics ◽  
1975 ◽  
Vol 81 (1) ◽  
pp. 143-162 ◽  
Author(s):  
David L Shellenbarger ◽  
J Dawson Mohler

ABSTRACT Temperature-conditional mutations of the Notch locus were characterized in an attempt to understand the organization of a "complex locus" and the control of its function in development. Among 21 newly induced Notch alleles, about one-half are temperature-conditional for some effects, and three are temperature-sensitive for viability. One temperature-sensitive lethal, l(1)Nts1, is functionally non-complementing for all known effects of Notch locus mutations and maps at a single site within the locus. Among the existing alleles involved in complex patterns of interallelic complementation, Ax59d5 is found to be temperature-sensitive, while fag, spl, and l(1)N are temperature-independent. Whereas temperature-sensitive alleles map predominantly to the right-most fifth of the locus, fag, spl, and l(1)N are known to map to the left of this region. Temperature-shift experiments demonstrate that fag, spl, and l(1)N cause defects at specific, non-overlapping times in development.—We conclude (1) that the Notch locus is a single cistron (responsible for a single functional molecule, presumably a polypeptide); (2) that the right-most fifth of the locus is, at least in part, the region involved in coding for the Notch product; (3) that the complexity of interallelic complementation is a developmental effect of mutations that cause defects at selected times and spaces, and that complementation occurs because the mutant defects are temporally and spatially non-overlapping; and (4) that mutants express selected defects due to critical temporal and spatial differences in the chemical conditions controlling the synthesis or function of the Notch product. The complexity of the locus appears to reside in controlling the expression (synthesis or function) of the Notch product in development.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 725
Author(s):  
Ludmila B. Damdinova ◽  
Bulat B. Damdinov

This article discusses the peculiarities of mineral composition and a fluid inclusions (FIs further in the text) study of the Kholtoson W and Inkur W deposits located within the Dzhida W-Mo ore field (Southwestern Transbaikalia, Russia). The Mo mineralization spatially coincides with the apical part of the Pervomaisky stock (Pervomaisky deposit), and the W mineralization forms numerous quartz veins in the western part of the ore field (Kholtoson vein deposit) and the stockwork in the central part (Inkur stockwork deposit). The ore mineral composition is similar at both deposits. Quartz is the main gangue mineral; there are also present muscovite, K-feldspar, and carbonates. The main ore mineral of both deposits is hubnerite. In addition to hubnerite, at both deposits, more than 20 mineral species were identified; they include sulfides (pyrite, chalcopyrite, galena, sphalerite, bornite, etc.), sulfosalts (tetrahedrite, aikinite, stannite, etc.), oxides (scheelite, cassiterite), and tellurides (hessite). The results of mineralogical and fluid inclusions studies allowed us to conclude that the Inkur W and the Kholtoson W deposits were formed by the same hydrothermal fluids, related to the same ore-forming system. For both deposits, the fluid inclusion homogenization temperatures varied within the range ~195–344 °C. The presence of cogenetic liquid- and vapor-dominated inclusions in the quartz from the ores of the Kholtoson deposit allowed us to estimate the true temperature range of mineral formation as 413–350 °C. Ore deposition occurred under similar physical-chemical conditions, differing only in pressures of mineral formation. The main factors of hubnerite deposition from hydrothermal fluids were decreases in temperature.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Matteo Callegari ◽  
Elena Crotti ◽  
Marco Fusi ◽  
Ramona Marasco ◽  
Elena Gonella ◽  
...  

AbstractThe core gut microbiome of adult honeybee comprises a set of recurring bacterial phylotypes, accompanied by lineage-specific, variable, and less abundant environmental bacterial phylotypes. Several mutual interactions and functional services to the host, including the support provided for growth, hormonal signaling, and behavior, are attributed to the core and lineage-specific taxa. By contrast, the diversity and distribution of the minor environmental phylotypes and fungal members in the gut remain overlooked. In the present study, we hypothesized that the microbial components of forager honeybees (i.e., core bacteria, minor environmental phylotypes, and fungal members) are compartmentalized along the gut portions. The diversity and distribution of such three microbial components were investigated in the context of the physico-chemical conditions of different gut compartments. We observed that changes in the distribution and abundance of microbial components in the gut are consistently compartment-specific for all the three microbial components, indicating that the ecological and physiological interactions among the host and microbiome vary with changing physico-chemical and metabolic conditions of the gut.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 539
Author(s):  
Benton C. Clark ◽  
Vera M. Kolb ◽  
Andrew Steele ◽  
Christopher H. House ◽  
Nina L. Lanza ◽  
...  

Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.


2006 ◽  
Vol 985 ◽  
Author(s):  
Brian D Marshall ◽  
Thomas A. Oliver ◽  
Zell E. Peterman

AbstractWater samples (referred to as puddle water samples) were collected from the surfaces of a conveyor belt and plastic sheeting in the unventilated portion of the Enhanced Characterization of the Repository Block (ECRB) Cross Drift in 2003 and 2005 at Yucca Mountain, Nevada. The chemistry of these puddle water samples is very different than that of pore water samples from borehole cores in the same region of the Cross Drift or than seepage water samples collected from the Exploratory Studies Facility tunnel in 2005. The origin of the puddle water is condensation on surfaces of introduced materials and its chemistry is dominated by components of the introduced materials. Large CO2 concentrations may be indicative of localized chemical conditions induced by biologic activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Kameda ◽  
Hamada Yohei

AbstractSubmarine debris flows are mass movement processes on the seafloor, and are geohazards for seafloor infrastructure such as pipelines, communication cables, and submarine structures. Understanding the generation and run-out behavior of submarine debris flows is thus critical for assessing the risk of such geohazards. The rheological properties of seafloor sediments are governed by factors including sediment composition, grain size, water content, and physico-chemical conditions. In addition, extracellular polymeric substances (EPS) generated by microorganisms can affect rheological properties in natural systems. Here we show that a small quantity of EPS (~ 0.1 wt%) can potentially increase slope stability and decrease the mobility of submarine debris flows by increasing the internal cohesion of seafloor sediment. Our experiments demonstrated that the flow behavior of sediment suspensions mixed with an analogue material of EPS (xanthan gum) can be described by a Herschel–Bulkley model, with the rheological parameters being modified progressively, but not monotonously, with increasing EPS content. Numerical modeling of debris flows demonstrated that the run-out distance markedly decreases if even 0.1 wt% of EPS is added. The addition of EPS can also enhance the resistivity of sediment to fluidization triggered by cyclic loading, by means of formation of an EPS network that binds sediment particles. These findings suggest that the presence of EPS in natural environments reduces the likelihood of submarine geohazards.


Sign in / Sign up

Export Citation Format

Share Document