A theoretical formulation for the stress analysis of multi-segmented spherical shells for high-volume liquid containment

2015 ◽  
Vol 87 ◽  
pp. 21-31 ◽  
Author(s):  
Alphose Zingoni ◽  
Batho Mokhothu ◽  
Nosakhare Enoma
Author(s):  
Nguyen Dinh Duc ◽  
Vu Thi Thuy Anh ◽  
Vu Thi Huong ◽  
Vu Dinh Quang ◽  
Pham Dinh Nguyen

Abstract: In this research, the nonlinear dynamic response of functionally graded carbon nanotube reinforced composite (FG-CNTRC) sandwich annular spherical shells supported by Pasternak’ foundation is considered by using the analytical approach. Unlike existing works, the structure has three layers: FG-CNTRC layer – homogeneous core – FG-CNTRC layer. Several examples are considered to analyse the behaviour of this sandwich-structured composite. The classical shell theory (CST) is used to derive theoretical formulation delineating nonlinear dynamic response of FG-CNTRC sandwich annular spherical shells. The numerical results explain the effect of material, geometrical parameters, and elastic foundations on the nonlinear dynamic response of the annular spherical shell.  


Author(s):  
Bohua Sun

The catenary shells of revolution are widely used in constructions due to their unique mechanics' feature. However, no publications on this type of shells can be found in the literature. To have a better understanding of the deformation and stress of the catenary shells of revolution, we formulate the principal radii for two kinds of catenary shells of revolution and their displacement type governing equations. Numerical simulations are carried out based on both Reissner-Meissner mixed formulations and displacement formulations. Our investigations show that both deformation and stress response of elastic catenary shells of revolution are sensitive to its geometric parameter $c$, and reveal that the mechanics of the catenary shells of revolution does much better than the spherical shells. Two complete codes in Maple are provided.


2019 ◽  
Vol 24 (1) ◽  
pp. 105-115
Author(s):  
D.S. Pathania ◽  
G. Verma

Abstract In the present paper, we have studied the temperature and pressure dependent creep stress analysis of spherical shell. The review is critical to enhance the warm resistance of spherical shells in high-temperature conditions. The effect of different parameters was studied and it was noticed that the parameter n has a significant influence on the creep stresses and strain rates. Creep stresses and strain rates are ascertained on the premise of summed up strain measures and Seth’s transition hypothesis. This investigation is completed to demonstrate the impacts of temperature on the creep stresses and strain rates in the spherical shell. The resulting quantities are computed numerically and depicted graphically. It has been watched that the spherical shell made of an incompressible material is on more secure side of configuration when contrasted with the shell made of a compressible material.


Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


Author(s):  
M.G. Burke ◽  
M.K. Miller

Interpretation of fine-scale microstructures containing high volume fractions of second phase is complex. In particular, microstructures developed through decomposition within low temperature miscibility gaps may be extremely fine. This paper compares the morphological interpretations of such complex microstructures by the high-resolution techniques of TEM and atom probe field-ion microscopy (APFIM).The Fe-25 at% Be alloy selected for this study was aged within the low temperature miscibility gap to form a <100> aligned two-phase microstructure. This triaxially modulated microstructure is composed of an Fe-rich ferrite phase and a B2-ordered Be-enriched phase. The microstructural characterization through conventional bright-field TEM is inadequate because of the many contributions to image contrast. The ordering reaction which accompanies spinodal decomposition in this alloy permits simplification of the image by the use of the centered dark field technique to image just one phase. A CDF image formed with a B2 superlattice reflection is shown in fig. 1. In this CDF micrograph, the the B2-ordered Be-enriched phase appears as bright regions in the darkly-imaging ferrite. By examining the specimen in a [001] orientation, the <100> nature of the modulations is evident.


2007 ◽  
Vol 177 (4S) ◽  
pp. 331-331 ◽  
Author(s):  
Stephen D.W. Beck ◽  
Richard S. Foster ◽  
Richard Bihrle ◽  
John P. Donohue

2006 ◽  
Vol 175 (4S) ◽  
pp. 8-9 ◽  
Author(s):  
Brent K. Hollenbeck ◽  
Yongliang Wei ◽  
John D. Birkmeyer

VASA ◽  
2019 ◽  
Vol 48 (6) ◽  
pp. 516-522 ◽  
Author(s):  
Verena Mayr ◽  
Mirko Hirschl ◽  
Peter Klein-Weigel ◽  
Luka Girardi ◽  
Michael Kundi

Summary. Background: For diagnosis of peripheral arterial occlusive disease (PAD), a Doppler-based ankle-brachial-index (dABI) is recommended as the first non-invasive measurement. Due to limitations of dABI, oscillometry might be used as an alternative. The aim of our study was to investigate whether a semi-automatic, four-point oscillometric device provides comparable diagnostic accuracy. Furthermore, time requirements and patient preferences were evaluated. Patients and methods: 286 patients were recruited for the study; 140 without and 146 with PAD. The Doppler-based (dABI) and oscillometric (oABI and pulse wave index – PWI) measurements were performed on the same day in a randomized cross-over design. Specificity and sensitivity against verified PAD diagnosis were computed and compared by McNemar tests. ROC analyses were performed and areas under the curve were compared by non-parametric methods. Results: oABI had significantly lower sensitivity (65.8%, 95% CI: 59.2%–71.9%) compared to dABI (87.3%, CI: 81.9–91.3%) but significantly higher specificity (79.7%, 74.7–83.9% vs. 67.0%, 61.3–72.2%). PWI had a comparable sensitivity to dABI. The combination of oABI and PWI had the highest sensitivity (88.8%, 85.7–91.4%). ROC analysis revealed that PWI had the largest area under the curve, but no significant differences between oABI and dABI were observed. Time requirement for oABI was significantly shorter by about 5 min and significantly more patients would prefer oABI for future testing. Conclusions: Semi-automatic oABI measurements using the AngER-device provide comparable diagnostic results to the conventional Doppler method while PWI performed best. The time saved by oscillometry could be important, especially in high volume centers and epidemiologic studies.


Sign in / Sign up

Export Citation Format

Share Document