Evaluation of tetracycline phytotoxicity by seed germination stage and radicle elongation stage tests: A comparison of two typical methods for analysis

2019 ◽  
Vol 251 ◽  
pp. 257-263 ◽  
Author(s):  
Yuan Luo ◽  
Jie Liang ◽  
Guangming Zeng ◽  
Xiaodong Li ◽  
Ming Chen ◽  
...  
Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Erivelton S. Roman ◽  
A. Gordon Thomas ◽  
Stephen D. Murphy ◽  
Clarence J. Swanton

The ability to predict time of weed seedling emergence relative to the crop is an important component of a mechanistic model describing weed and crop competition. In this paper, we hypothesized that the process of germination could be described by the interaction of temperature and water potential and that the rate of seedling shoot and radicle elongation vary as a function of temperature. To test these hypotheses, incubator studies were conducted using seeds and seedlings of common lambsquarters. Probit analysis was used to account for variation in cardinal temperatures and base water potentials and to develop parameters for a new mathematical model that describes seed germination and shoot and radicle elongation in terms of hydrothermal time and temperature, respectively. This hydrothermal time model describes the phenology of seed germination using a single curve, generated from the relationship of temperature and water potential.


2013 ◽  
Vol 85 (12) ◽  
pp. 2161-2174 ◽  
Author(s):  
Guadalupe de la Rosa ◽  
Martha Laura López-Moreno ◽  
David de Haro ◽  
Cristian E. Botez ◽  
José R. Peralta-Videa ◽  
...  

Past reports indicate that some nanoparticles (NPs) affect seed germination; however, the biotransformation of metal NPs is still not well understood. This study investigated the toxicity on seed germination/root elongation and the uptake of ZnO NPs and Zn2+ in alfalfa (Medicago sativa), cucumber (Cucumis sativus), and tomato (Solanum lycopersicum) seedlings. Seeds were treated with ZnO NPs at 0–1600 mg L–1 as well as 0–250 mg L–1 Zn2+ for comparison purposes. Results showed that at 1600 mg L–1 ZnO NPs, germination in cucumber increased by 10 %, and alfalfa and tomato germination were reduced by 40 and 20 %, respectively. At 250 mg Zn2+ L–1, only tomato germination was reduced with respect to controls. The highest Zn content was of 4700 and 3500 mg kg–1 dry weight (DW), for alfalfa seedlings germinated in 1600 mg L–1 ZnO NPs and 250 mg L–1 Zn2+, respectively. Bulk X-ray absorption spectroscopy (XAS) results indicated that ZnO NPs were probably biotransformed by plants. The edge energy positions of NP-treated samples were at the same position as Zn(NO3)2, which indicated that Zn in all plant species was as Zn(II).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenhui Li ◽  
Huizhen Zhang ◽  
Youling Zeng ◽  
Lijun Xiang ◽  
Zhonghua Lei ◽  
...  

1972 ◽  
Vol 130 (4) ◽  
pp. 983-995 ◽  
Author(s):  
T. R. Green ◽  
D. J. Baisted

The activities of individual enzymes of the isoprenoid pathway from mevalonate kinase to squalene synthetase in homogenates of seeds germinated up to 32h were assayed. Changes in the activity of each enzyme were observed and compared with the activity at the 2h germination stage. Activities of alkaline phosphatase and fructose 1,6-diphosphate aldolase were similarly measured to provide a reference for changes in the general metabolic activity of seeds during imbibition of water. Water uptake reached a plateau after 12h. The reference enzymes almost doubled in activity between 2 and 8h and thereafter their activities steadily declined. All of the enzymes of the isoprenoid pathway increased in activity between 2 and 6h and, thereafter, with the exception of the prenyltransferase, their activities remained relatively constant. With the prenyltransferase activity the initial increase was followed by a short plateau between 6 and 9h and then a second increase to a maximum between 14 and 16h. After 16h the activity declined. The relative activities of the isoprenoid enzymes at 16h of germination were mevalonate kinase>phosphomevalonate kinase>pyrophosphomevalonate decarboxylase≈isopentenyl pyrophosphate isomerase>squalene synthetase>isopentenyl pyrophosphate/dimethylallyl pyrophosphate prenyltransferase. The finding that the prenyltransferase may be the rate-limiting enzyme in squalene synthesis from mevalonate is discussed in relation to regulation of isoprenoid synthesis during pea-seed germination.


2001 ◽  
Vol 49 (2) ◽  
pp. 185 ◽  
Author(s):  
M. Ajmal Khan ◽  
Bilquees Gul ◽  
Darrell J. Weber

Suaeda moquinii (Torrey) Greene (desert blite), a succulent shrub in the family Chenopodiaceae, is widely distributed in salt marshes of the western United States. Suaeda moquinii produces dimorphic seeds (soft brown and hard black). Both types of seeds were collected from a salt marsh in Faust, Utah. Experiments were conducted to determine the seed germination responses of the black and brown seeds to salinity and temperature. Brown seeds were found to be one of the most salt tolerant at the germination stage when compared to other halophytes. Brown seeds germinated (30%) at 1000 mM NaCl, but only a few black seeds germinated (8%) at 600 mM NaCl. Seed germination occurred in most saline treatments at the lowest thermoperiod (5–15˚C) tested. In some salinity treatments (600, 800, 1000 mM), further increases in temperature resulted in progressively decreased seed germination. Brown seeds germinated better and had a higher germination rate (germination velocity) than black seeds at all thermoperiods. The highest rate of germination of black seeds occurred at the lowest thermoperiod (5–15˚C). Recovery of germination for black seeds when transferred to distilled water after being in various salinity treatments for 20 days was nearly complete (82–100%) at the lowest thermoperiod (5–15˚C) but decreased with increase in the temperature. Brown seeds recovered substantially (59–97%) from salinity at all thermoperiods. Regression analyses indicated significant differences between the germination recovery of the black and brown seeds.


2019 ◽  
Vol 37 ◽  
Author(s):  
C.J.B. RAMOS ◽  
R.R. FONSECA ◽  
A.P.S. SOUZA FILHO ◽  
V.L. TEIXEIRA

ABSTRACT: Two lipophilic extracts and atomaric acid (1), an isolated natural product, were obtained from the marine brown alga Stypopodium zonale (Dictyotaceae) to identify and characterize their potential inhibitory effects on the seed germination, radicle elongation, and hypocotyl development of the weeds Mimosa pudica and Senna obtusifolia. The extracts were prepared with hexane and dichloromethane, and atomaric acid (1) was isolated from hexane extract by way of conventional chromatographic methods. During a 15 days period, germination bioassays were performed at 25 oC with a 12 h photoperiod, whereas radicle elongation and hypocotyl development were assayed at 25 oC with a 24 h photoperiod. After, Petri dishes 9.0 cm in diameter were coated with qualitative filter paper, 25 seeds were placed in a germination chamber, while six pregerminated seeds were placed in the Petri dish for 2-3 days. After 10 days, radicle and hypocotyl extension were measured; and the inhibitory potential of the extracts was assessed at 10 ppm and that of the atomaric acid at 5, 10, 15, and 20 ppm. In both M. pudica and S. obtusifolia, dichloromethane extract achieved the greatest rates of inhibition during seed germination (34% and 22%, respectively), radical germination (38% and 30%, respectively), and hypocotyl development (29% and 22%, respectively). At a concentration of 20 ppm, atomaric acid (1) also demonstrated reduced inhibitory potential, with mean values of 58.67% for M. pudica and 48.67% for S. obtusifolia.


Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 557-562 ◽  
Author(s):  
Anil Shrestha ◽  
Erivelton S. Roman ◽  
A. Gordon Thomas ◽  
Clarence J. Swanton

Laboratory studies were conducted to describe germination and seedling elongation ofAmbrosia artemisiifoliaL. (common ragweed) seed. The germination process was tested for the interaction of temperature and water potential across eight thermo-periods (7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, and 42.5 C) and 12 water potentials (0, −0.03, −0.06, −0.1, −0.2, −0.4, −0.6, −0.9, −1.2, −1.5, −1.8, and −2.1 mPa). The rate of seedling shoot and radicle elongation was described as a function of temperature and tested for eight day: night temperature treatments (10: 5, 15 : 10, 20 : 15, 25 : 20, 30 : 25, 35 : 30, 40 : 35, and 45 : 40 C). The rate of germination was mathematically modeled by a Weibull function. Probit analysis was used to determine the cardinal temperatures (base, optimum, and maximum) and base water potential (αb). The base temperature (Tb), optimum temperature (Topt), maximum temperature (Tmax), and αbforA. artemisiifoliagermination were estimated as 3.6, 30.9, and 40 C and −0.8 mPa, respectively. The rates of shoot and radicle elongation were described by regression models. TheTb,Topt, andTmaxfor shoot and radicle elongation were estimated as 7.7 and 5.1, 29.5 and 31.4, and 43.0 and 44.3 C, respectively. A mathematical model describing the process ofA. artemisiifoliaseed germination in terms of hydrothermal time (θHT) was derived. The θHTmodel described the phenology ofA. artemisiifoliaseed germination using a single curve generated from the relationship of temperature and water potential. This model can help in predicting germination and emergence ofA. artemisiifoliaunder field conditions.


Sign in / Sign up

Export Citation Format

Share Document