Computational analysis of hydrogen flow and aerodynamic noise emission in a solenoid valve during fast-charging to fuel cell automobiles

2022 ◽  
Vol 45 ◽  
pp. 103661
Author(s):  
Hifni Mukhtar Ariyadi ◽  
Jongsoo Jeong ◽  
Kiyoshi Saito
2013 ◽  
Vol 13 (4) ◽  
pp. 139-147 ◽  
Author(s):  
Junsheng Jiao

Abstract The output voltage of Solid Oxide Fuel Cell (SOFC) is usually changed with the temperature and hydrogen flow rate. Since the fuel cell can generate a wide range of voltages and currents at the terminals, as a consequence, a constant DC voltage and function cannot be maintained by itself as a DC voltage power supply source. To solve this problem, a simple SOFC electrochemical model is introduced to control the output voltage. The Sliding Mode Control (SMC) is used to control the output voltage of the DC-DC converter for maintaining the constant DC voltage when the temperature and hydrogen flow rate are changed. By the simulation results it can be seen that the SMC technique has improved the transient response and reduced the steady state error of DC voltage.


2016 ◽  
Vol 20 (5) ◽  
pp. 1421-1433 ◽  
Author(s):  
Ismet Tikiz ◽  
Imdat Taymaz

Cell temperature and selection of the reactant gases are crucial parameters for the design and optimization of fuel cell performance. In this study, effect of operating conditions on the performance of Solid Oxide Fuel (SOFC) has been investigated. Application of Response Surface Methodology (RSM) was applied to optimize operations conditions in SOFC. For this purpose, an experimental set up for testing of SOFC has been established to investigate the effect of Hydrogen, Oxygen, Nitrogen flow rates and cell temperature parameters on cell performance. Hydrogen flow rate, oxygen flow rate, nitrogen flow rate and cell temperature were the main parameters considered and they were varied between 0.25 and 1 L/min, 0.5 and 1 L/min, 0 and 1 L/min and 700-800 oC in the analyses respectively. The maximum power density was found as 0.572 W/cm2 in the experiments.


Author(s):  
Yassine AMADANE ◽  
Hamid MOUNIR ◽  
Abdellatif El MARJANI ◽  
Rabie EL ALAOUI ◽  
Mohamed Karim ETTOUHAMI ◽  
...  

Author(s):  
Ahmed A. Al-Durra ◽  
Stephen Yurkovich ◽  
Yann Guezennec

To be practical in automotive traction applications, fuel cell systems must provide power output levels of performance that rival that of typical internal combustion engines. In so doing, transient behavior is one of the keys for success of fuel cell systems in vehicles. From a model-based control perspective, regulation of the fuel cell system through transients is critical, where the response of a fuel cell system depends on the air and hydrogen (flow and pressure regulation) and heat and water management. The focus of this paper is on the air/fuel supply subsystem in tracking an optimum variable pressurization and air flow for maximum system efficiency during load transients. The control-oriented model developed for this study considers electrochemistry, thermodynamics, and fluid flow principles for a 13-state, nonlinear model of a pressurized fuel cell system. For control purposes, a model reduction is performed by converting some of the model dynamics to simple algebraic relationships. A single reference input, the power demanded by the user, is utilized to produce a corresponding reference air flow and back-pressure valve opening, after passing through a static calculation and a tabulated map. Because of the complexity of the full nonlinear model (used in simulation as the truth model), where several maps are used rather than functional forms, two different control techniques are examined separately, each using a feedforward component. The first technique uses an observer-based linear optimum control which combines a feed-forward approach based on the steady state plant inverse response, coupled to a multi-variable LQR feedback control. An extension of that approach, for control in the full nonlinear range of operation, leads to the second technique, nonlinear gain-scheduled control.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2119 ◽  
Author(s):  
Guillermo Valencia ◽  
Aldair Benavides ◽  
Yulineth Cárdenas

A hybrid system was analyzed and optimized to produce electric energy in non-interconnected zones in the Colombian Caribbean region, contributing to the reduction of greenhouse gas emissions and the improvement in efficient energy management. A comparative analysis of the performance of hybrid was conducted using a proposed model, built with historical data for meteorological conditions, wind speed, and solar radiation. The model is integrated by a Southwest Wind Power Inc. wind turbine AIR 403, a proton-exchange membrane fuel cell (PEM), an electrolyzer, a solar panel, and a regulator based on proportional, integral, and derivative (PID) controllers to manipulate oxygen and hydrogen flow entering in the fuel cell. The transient responses of the cell voltage, current, and power were obtained for the demand of 200 W under changes in solar radiation and wind speed for each day of the year 2013 in different meteorological stations, such as Ernesto Cortissoz airport, Puerto Bolívar, Alfonso Lopez airport, and Simon Bolívar airport. Through the adjustment of the hydrogen and oxygen flow into the fuel cell, the maximum contribution of power generation from the fuel cell was presented for the Simon Bolívar airport in November with a value of 158.35 W (9.45%). Multiobjective design optimization under a Pareto diagram front is presented for each place studied to minimize the levelized cost of energy and CO2 emission, where the objective control variables are the number of panel and stack in the photovoltaic (PV) system and PEM.


Author(s):  
Qiang Kang ◽  
Shuguang Zuo ◽  
Kaijun Wei

The regenerative flow compressor used in fuel-cell cars generates high aerodynamic noise, which is the main source of noise. Compared with the research on centrifugal or axial turbomachinery, research on the noise of regenerative flow compressors is far from adequate. This paper presents the on-going work on it at Tongji University based on both experimental and computational works. In this study, a three-dimensional unsteady computational fluid dynamic model of the compressor was constructed with the large eddy approach. The pressure fluctuation, vortex noise source and Ffowcs William-Hawkings (FW-H) method were used to analyze the characteristics of the aerodynamic noise sources. Additionally, the far-field aerodynamic noise generated by the internal flow of the compressor was predicted using the aeroacoustic finite element method. The simulation results were validated with the experimental data. It was found that combining the fluid dynamic model and aeroacoustic finite element analysis promising results for aerodynamic noise prediction of compressors could be produced. The effects of the impeller parameters on the aerodynamic noise of the compressor were also studied.


Sign in / Sign up

Export Citation Format

Share Document