Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to cross-link chitosan–gelatin films: A structure–function approach

2015 ◽  
Vol 67 ◽  
pp. 113-127 ◽  
Author(s):  
Nasreddine Benbettaïeb ◽  
Thomas Karbowiak ◽  
Claire-Hélène Brachais ◽  
Frédéric Debeaufort
2016 ◽  
Vol 118 ◽  
pp. 81-86 ◽  
Author(s):  
Nasreddine Benbettaïeb ◽  
Ali Assifaoui ◽  
Thomas Karbowiak ◽  
Frédéric Debeaufort ◽  
Odile Chambin

2013 ◽  
Vol 86 (1) ◽  
pp. 68-85 ◽  
Author(s):  
K. C. Yong

ABSTRACT The electron beam irradiation technique was successfully used to cross-link poly(butadiene-co-acrylonitrile)-polyaniline dodecylbenzenesulfonate [NBR-PAni.DBSA] blends. Significant increase in cross-linking densities of all blends with doses of irradiation (up to 200 kGy) was observed, and a reasonably high cross-linking density level (in the order of 1030 m−3) also was achieved. All electron beam–irradiated NBR-PAni.DBSA blends exhibited good tensile properties (with tensile strength up to ∼20 MPa), with values that are comparable to those of similar blends cross-linked with either conventional sulfur or peroxide techniques. This kind of irradiation-induced cross-linking technique (at doses up to 200 kGy) also did not interrupt the blends' electrical properties after the blends were sufficiently stabilized for at least 24 h. The irradiated NBR-PAni.DBSA blends also possessed good electrical properties, that is, a single conductivity percolation threshold and high conductivities up to the order of 10−2 S.cm−1. All of these findings indicate a good potential for using the electron beam irradiation technique to prepare highly cross-linked, electrically conductive NBR-PAni.DBSA blends.


Author(s):  
B. L. Armbruster ◽  
B. Kraus ◽  
M. Pan

One goal in electron microscopy of biological specimens is to improve the quality of data to equal the resolution capabilities of modem transmission electron microscopes. Radiation damage and beam- induced movement caused by charging of the sample, low image contrast at high resolution, and sensitivity to external vibration and drift in side entry specimen holders limit the effective resolution one can achieve. Several methods have been developed to address these limitations: cryomethods are widely employed to preserve and stabilize specimens against some of the adverse effects of the vacuum and electron beam irradiation, spot-scan imaging reduces charging and associated beam-induced movement, and energy-filtered imaging removes the “fog” caused by inelastic scattering of electrons which is particularly pronounced in thick specimens.Although most cryoholders can easily achieve a 3.4Å resolution specification, information perpendicular to the goniometer axis may be degraded due to vibration. Absolute drift after mechanical and thermal equilibration as well as drift after movement of a holder may cause loss of resolution in any direction.


Author(s):  
Wei-Chih Wang ◽  
Jian-Shing Luo

Abstract In this paper, we revealed p+/n-well and n+/p-well junction characteristic changes caused by electron beam (EB) irradiation. Most importantly, we found a device contact side junction characteristic is relatively sensitive to EB irradiation than its whole device characteristic; an order of magnitude excess current appears at low forward bias region after 1kV EB acceleration voltage irradiation (Vacc). Furthermore, these changes were well interpreted by our Monte Carlo simulation results, the Shockley-Read Hall (SRH) model and the Generation-Recombination (G-R) center trap theory. In addition, four essential examining items were suggested and proposed for EB irradiation damage origins investigation and evaluation. Finally, by taking advantage of the excess current phenomenon, a scanning electron microscope (SEM) passive voltage contrast (PVC) fault localization application at n-FET region was also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document