Age-dependent decline in 26S proteasome activity in Drosophila

2007 ◽  
Vol 42 (1-2) ◽  
pp. 147-148
Author(s):  
V.A. Vernace ◽  
Lisette Arnaud ◽  
T. Schmidt-Glenewinkel ◽  
M.E. Figueiredo-Pereira
2008 ◽  
Vol 29 (4) ◽  
pp. 1095-1106 ◽  
Author(s):  
Ayako Tonoki ◽  
Erina Kuranaga ◽  
Takeyasu Tomioka ◽  
Jun Hamazaki ◽  
Shigeo Murata ◽  
...  

ABSTRACT The intracellular accumulation of unfolded or misfolded proteins is believed to contribute to aging and age-related neurodegenerative diseases. However, the links between age-dependent proteotoxicity and cellular protein degradation systems remain poorly understood. Here, we show that 26S proteasome activity and abundance attenuate with age, which is associated with the impaired assembly of the 26S proteasome with the 19S regulatory particle (RP) and the 20S proteasome. In a genetic gain-of-function screen, we characterized Rpn11, which encodes a subunit of the 19S RP, as a suppressor of expanded polyglutamine-induced progressive neurodegeneration. Rpn11 overexpression suppressed the age-related reduction of the 26S proteasome activity, resulting in the extension of flies' life spans with suppression of the age-dependent accumulation of ubiquitinated proteins. On the other hand, the loss of function of Rpn11 caused an early onset of reduced 26S proteasome activity and a premature age-dependent accumulation of ubiquitinated proteins. It also caused a shorter life span and an enhanced neurodegenerative phenotype. Our results suggest that maintaining the 26S proteasome with age could extend the life span and suppress the age-related progression of neurodegenerative diseases.


2018 ◽  
Vol 315 (2) ◽  
pp. G318-G327 ◽  
Author(s):  
Geeta Rao ◽  
Hailey Houson ◽  
Gregory Nkepang ◽  
Hooman Yari ◽  
Chengwen Teng ◽  
...  

Multiorgan failure in hemorrhagic shock is triggered by gut barrier dysfunction and consequent systemic infiltration of proinflammatory factors. Our previous study has shown that diphenyldihaloketone drugs 4-[3,5-bis[(2-chlorophenyl)methylene]-4-oxo-1-piperidinyl]-4-oxo-2-butenoic acid (CLEFMA) and 3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone (EF24) restore gut barrier dysfunction and reduce systemic inflammatory response in hemorrhagic shock. We investigated the effect of hemorrhagic shock on proteasome activity of intestinal epithelium and how CLEFMA and EF24 treatments modulate proteasome function in hemorrhagic shock. CLEFMA or EF24 (0.4 mg/kg) were given 1 h after withdrawing 50% of blood from Sprague-Dawley rats; no other resuscitation was provided. After another 5 h of compensation, small gut was collected to process tissue for proteasome activity, immunoblotting, and mRNA levels of genes responsible for unfolded-protein response (XBP1, ATF4, glucose-regulated protein of 78/95 kDa, and growth arrest and DNA damage inducible genes 153/34), polyubiquitin B and C, and immunoproteasome subunits β type-8 and -10 and proteasome activator subunit 1. We found that hemorrhagic shock induced proteasome activity in gut tissue and reduced the amounts of ubiquitinated proteins displayed on antiubiquitin immunoblots. However, simultaneous induction of unfolded-protein response or immunoproteasome genes was not observed. CLEFMA and EF24 treatments abolished the hemorrhagic shock-induced increase in proteasome activity. Further investigations revealed that the induction of proteasome in hemorrhagic shock is associated with disassembly of 26S proteasome; CLEFMA and EF24 prevented this disassembly. Consistent with these data, CLEFMA and EF24 reduced hemorrhagic shock-induced degradation of 20S substrate ornithine decarboxylase in gut tissue. These results suggest that activated proteasome plays an important role in ischemic gut pathophysiology, and it can be a druggable target in shock-induced gut dysfunction. NEW & NOTEWORTHY Ischemic injury to the gut is a trigger for the systemic inflammatory response and multiple organ failure in trauma and hemorrhagic shock. We show for the first time that hemorrhagic shock induces the gut proteasome activity by engendering 26S proteasome disassembly. Diphenyldihaloketones 4-[3,5-bis[(2-chlorophenyl)methylene]-4-oxo-1-piperidinyl]-4-oxo-2-butenoic acid and 3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone treatment prevented the 26S disassembly. Understanding the role of proteasome in shock-associated gut injury will assist in the development of therapeutic means to address it.


2016 ◽  
Vol 161 ◽  
pp. 265-275 ◽  
Author(s):  
Francesca Felicia Caputi ◽  
Lucia Carboni ◽  
Daria Mazza ◽  
Sanzio Candeletti ◽  
Patrizia Romualdi

2018 ◽  
Vol 115 (32) ◽  
pp. 8155-8160 ◽  
Author(s):  
Sourav Banerjee ◽  
Chenggong Ji ◽  
Joshua E. Mayfield ◽  
Apollina Goel ◽  
Junyu Xiao ◽  
...  

Curcumin, the active ingredient in Curcuma longa, has been in medicinal use since ancient times. However, the therapeutic targets and signaling cascades modulated by curcumin have been enigmatic despite extensive research. Here we identify dual-specificity tyrosine-regulated kinase 2 (DYRK2), a positive regulator of the 26S proteasome, as a direct target of curcumin. Curcumin occupies the ATP-binding pocket of DYRK2 in the cocrystal structure, and it potently and specifically inhibits DYRK2 over 139 other kinases tested in vitro. As a result, curcumin diminishes DYRK2-mediated 26S proteasome phosphorylation in cells, leading to reduced proteasome activity and impaired cell proliferation. Interestingly, curcumin synergizes with the therapeutic proteasome inhibitor carfilzomib to induce apoptosis in a variety of proteasome-addicted cancer cells, while this drug combination exhibits modest to no cytotoxicity to noncancerous cells. In a breast cancer xenograft model, curcumin treatment significantly reduces tumor burden in immunocompromised mice, showing a similar antitumor effect as CRISPR/Cas9-mediated DYRK2 depletion. These results reveal an unexpected role of curcumin in DYRK2-proteasome inhibition and provide a proof-of-concept that pharmacological manipulation of proteasome regulators may offer new opportunities for anticancer treatment.


2015 ◽  
Vol 192 (9) ◽  
pp. 1089-1101 ◽  
Author(s):  
Nora Semren ◽  
Vanessa Welk ◽  
Martina Korfei ◽  
Ilona E. Keller ◽  
Isis E. Fernandez ◽  
...  

Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 351 ◽  
Author(s):  
Tatiana Astakhova ◽  
Alexey Morozov ◽  
Pavel Erokhov ◽  
Maria Mikhailovskaya ◽  
Sergey Akopov ◽  
...  

Tumor growth is associated with elevated proteasome expression and activity. This makes proteasomes a promising target for antitumor drugs. Current antitumor drugs such as bortezomib that inhibit proteasome activity have significant side effects. The purpose of the present study was to develop effective low-toxic antitumor compositions with combined effects on proteasomes. For compositions, we used bortezomib in amounts four and ten times lower than its clinical dose, and chose menadione sodium bisulfite (MSB) as the second component. MSB is known to promote oxidation of NADH, generate superoxide radicals, and as a result damage proteasome function in cells that ensure the relevance of MSB use for the composition development. The proteasome pool was investigated by the original native gel electrophoresis method, proteasome chymotrypsin-like activity—by Suc-LLVY-AMC-hydrolysis. For the compositions, we detected 10 and 20 μM MSB doses showing stronger proteasome-suppressing and cytotoxic in cellulo effects on malignant cells than on normal ones. MSB indirectly suppressed 26S-proteasome activity in cellulo, but not in vitro. At the same time, MSB together with bortezomib displayed synergetic action on the activity of all proteasome forms in vitro as well as synergetic antitumor effects in cellulo. These findings determine the properties of the developed compositions in vivo: antitumor efficiency, higher (against hepatocellular carcinoma and mammary adenocarcinoma) or comparable to bortezomib (against Lewis lung carcinoma), and drastically reduced toxicity (LD50) relative to bortezomib. Thus, the developed compositions represent a novel generation of bortezomib-based anticancer drugs combining high efficiency, low general toxicity, and a potentially expanded range of target tumors.


2003 ◽  
Vol 163 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Hui Zhou ◽  
Fengli Cao ◽  
Zhishan Wang ◽  
Zhao-Xue Yu ◽  
Huu-Phuc Nguyen ◽  
...  

Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntington's disease (HD), it is unclear how toxic htt fragments are generated and contribute to the disease process. Here, we report that complex NH2-terminal mutant htt fragments smaller than the first 508 amino acids were generated in htt-transfected cells and HD knockin mouse brains. These fragments constituted neuronal nuclear inclusions and appeared before neurological symptoms. The accumulation and aggregation of these htt fragments were associated with an age-dependent decrease in proteasome activity and were promoted by inhibition of proteasome activity. These results suggest that decreased proteasome activity contributes to late onset htt toxicity and that restoring the ability to remove NH2-terminal fragments will provide a more effective therapy for HD than inhibiting their production.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2741-2741
Author(s):  
Jie Cai ◽  
Xian Jin Lian ◽  
Christopher von Roretz ◽  
Chaim Shustik ◽  
Imed Gallouzi ◽  
...  

Abstract Abstract 2741 Poster Board II-717 Bortezomib (Velcade ™, PS-341, BTZ) is a boronate dipeptide that reversibly inhibits the 26S proteasome, which is essential for the breakdown of ubiquitinated proteins and the regulation of normal cellular homeostasis. The activity of BTZ in treatment of newly diagnosed and refractory/relapsed multiple myeloma may be limited by the development of chemoresistance, the mechanisms of which are poorly understood. To investigate the molecular basis of Bortezomib resistance, BTZ-resistant (BTZr) cell lines were generated by stepwise selection procedures from HeLa, CCRF-CEM, and 4 multiple myeloma cells lines (8226S, U266, H929, and MM.1S), respectively. These BTZ-selected cell lines displayed varying degrees of elevated resistance (2 to 50 fold) to clinically relevant concentrations of BTZ. In addition, while most of the BTZr cells showed cross resistance to several other proteasome inhibitors (PIs), including MG-132 and Epoxomicin, they remained as sensitive to other chemotherapeutic drugs, such as anthracyclines, vinkalkaloids and etoposide, as their parental cells. The proteasome activity profiles are distinct among the cell lines. All parental cell lines displayed varying levels of chymotrypsin-like (CT-L) activity, which is the primary target of BTZ. Most BTZr lines showed markedly decreased CT-L activity, with a few exceptions. Moreover, the observed CT-L activity in all cell lines can be inhibited directly by BTZ and other PIs. In contrast, very low levels of caspase-like or post-glutamyl peptide hydrolyzing (PGPH) proteasome activity were detected in all cell lines. BTZ resistance in HeLa/BTZ cells was closely associated with increased resistance to PI-induced apoptosis, as shown by reduced number of Annexin V-stained cells and by delayed activation/cleavage of apoptosis proteins, such as Caspase-3 and Poly(ADP-ribose) Polymerase (PARP). Furthermore, the resistance to BTZ affected the mechanisms of cell stress responses. As for the parental HeLa cells, HeLa/BTZr cells retained the ability to form, in response to PI treatment, pro-survival foci in the cytoplasm known as stress granules (SGs). However, the drug concentrations required to induce SG formation in HeLa/BTZr cells are much higher (∼4 fold) than those for the parental HeLa, suggesting the development of stress-coping mechanisms in these BTZr cells. Gene expression profiling studies are in progress to identify transcriptomes individually or generally associated with BTZ resistance in these cell lines. Further characterization of these phenotypically similar, yet mechanistically distinct BTZr cell lines may elucidate diverse mechanisms of drug resistance to Bortezomib and other proteasome inhibitors. Disclosures: No relevant conflicts of interest to declare.


10.1038/nm894 ◽  
2003 ◽  
Vol 9 (7) ◽  
pp. 969-973 ◽  
Author(s):  
Gary D Luker ◽  
Christina M Pica ◽  
Jiling Song ◽  
Kathryn E Luker ◽  
David Piwnica-Worms

Sign in / Sign up

Export Citation Format

Share Document