Implications of amino acid sensing and dietary protein to the aging process

2019 ◽  
Vol 115 ◽  
pp. 69-78 ◽  
Author(s):  
Oleh Lushchak ◽  
Olha M. Strilbytska ◽  
Ihor Yurkevych ◽  
Alexander M. Vaiserman ◽  
Kenneth B. Storey
2021 ◽  
pp. 101312
Author(s):  
Dima White ◽  
Roshan Adhikari ◽  
Jinquan Wang ◽  
Chongxiao Chen ◽  
Jae Hwan Lee ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1469
Author(s):  
Patricia M. Rusu ◽  
Andrea Y. Chan ◽  
Mathias Heikenwalder ◽  
Oliver J. Müller ◽  
Adam J. Rose

Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1993 ◽  
Vol 264 (6) ◽  
pp. G1057-G1065 ◽  
Author(s):  
C. Moundras ◽  
C. Remesy ◽  
C. Demigne

The aim of the present study was to evaluate the effect of changes in dietary protein level on overall availability of amino acids for tissues. For this purpose, rats were adapted to diets containing various concentrations of casein (7.5, 15, 30, and 60%) and were sampled either during the postprandial or postabsorptive period. In rats fed the protein-deficient diet, glucogenic amino acids (except threonine) tended to accumulate in plasma, liver, and muscles. In rats fed high-protein diets, the hepatic balance of glucogenic amino acids was markedly enhanced and their liver concentrations were consistently depressed. This response was the result of a marked induction of amino acid catabolism (a 45-fold increase of liver threonine-serine dehydratase activity was observed with the 60% casein diet). The muscle concentrations of threonine, serine, and glycine underwent changes parallel to plasma and liver concentrations, and a significant reduction of glutamine was observed. During the postabsorptive period, adaptation to high-protein diets resulted in a sustained catabolism of most glucogenic amino acids, which accentuated the drop in their concentrations (especially threonine) in all the compartments studied. The time course of metabolic adaptation from a 60 to a 15% casein diet has also been investigated. Adaptation of alanine and glutamine metabolism was rapid, whereas that of threonine, serine, and glycine was delayed and required 7-11 days. This was paralleled by a relatively slow decay of liver threonine-serine dehydratase (T-SDH) activity in contrast to the rapid adaptation of pyruvate kinase activity after refeeding a high-carbohydrate diet.(ABSTRACT TRUNCATED AT 250 WORDS)


1975 ◽  
Vol 34 (3) ◽  
pp. 363-373 ◽  
Author(s):  
E. Wetnli ◽  
T. R. Morris ◽  
T. P. Shresta

1. Three growth trials were done using male broiler chicks. In the first two trials, groundnut meal was used, with and without supplementary methionine and lysine. In the third trial, soya-bean meal was used with and without supplementary methionine. Protein levels ranged in the first trial from 120 to 420 g/kg diet and in the third trial from 120 to 300 g/kg diet. Thus the assumed minimal amino acid requirements of the chick were supplied by high levels of low-quality dietary protein.2. Diets based on cereals and groundnut meal did not support maximum live-weight gain or maximum efficiency of food utilization at any level of dietary protein. When the principal deficiencies of lysine and methionine were corrected, this protein mixture was capable of supporting the same growth rate as a control diet of cereals and herring meal.3. Diets based on maize and soya-bean meal did not support quite the same growth rate as similar diets supplemented with methionine, even though the protein level in the unsupplemented diets was sufficient to meet the assumed methionine requirements.4. These results are interpreted as examples of amino acid imbalance in diets composed of familiar feeding-stuffs. It is concluded that one cannot assume that the poor quality of a protein source can always be offset by increasing the concentration of dietary protein.


2007 ◽  
Vol 28 (2) ◽  
pp. 551-563 ◽  
Author(s):  
Zhengchang Liu ◽  
Janet Thornton ◽  
Mário Spírek ◽  
Ronald A. Butow

ABSTRACT Cells of the budding yeast Saccharomyces cerevisiae sense extracellular amino acids and activate expression of amino acid permeases through the SPS-sensing pathway, which consists of Ssy1, an amino acid sensor on the plasma membrane, and two downstream factors, Ptr3 and Ssy5. Upon activation of SPS signaling, two transcription factors, Stp1 and Stp2, undergo Ssy5-dependent proteolytic processing that enables their nuclear translocation. Here we show that Ptr3 is a phosphoprotein whose hyperphosphorylation is increased by external amino acids and is dependent on Ssy1 but not on Ssy5. A deletion mutation in GRR1, encoding a component of the SCFGrr1 E3 ubiquitin ligase, blocks amino acid-induced hyperphosphorylation of Ptr3. We found that two casein kinase I (CKI) proteins, Yck1 and Yck2, previously identified as positive regulators of SPS signaling, are required for hyperphosphorylation of Ptr3. Loss- and gain-of-function mutations in PTR3 result in decreased and increased Ptr3 hyperphosporylation, respectively. We found that a defect in PP2A phosphatase activity leads to the hyperphosphorylation of Ptr3 and constitutive activation of SPS signaling. Two-hybrid analysis revealed interactions between the N-terminal signal transduction domain of Ssy1 with Ptr3 and Yck1. Our findings reveal that CKI and PP2A phosphatase play antagonistic roles in SPS sensing by regulating Ptr3 phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document