scholarly journals Assessment of the glycaemic index, content of bioactive compounds, and their in vitro bioaccessibility in oat-buckwheat breads

2020 ◽  
Vol 330 ◽  
pp. 127199
Author(s):  
Natalia Bączek ◽  
Anna Jarmułowicz ◽  
Małgorzata Wronkowska ◽  
Claudia Monika Haros
Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3480
Author(s):  
Adriana Maite Fernández-Fernández ◽  
Eduardo Dellacassa ◽  
Tiziana Nardin ◽  
Roberto Larcher ◽  
Adriana Gámbaro ◽  
...  

The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.


LWT ◽  
2020 ◽  
Vol 118 ◽  
pp. 108830 ◽  
Author(s):  
Selma Kayacan ◽  
Salih Karasu ◽  
Perihan Kübra Akman ◽  
Hamza Goktas ◽  
Ibrahim Doymaz ◽  
...  

2016 ◽  
Vol 31 ◽  
pp. 237-249 ◽  
Author(s):  
Thatyane Vidal Fonteles ◽  
Ana Karoline Ferreira Leite ◽  
Ana Raquel Araújo Silva ◽  
Alessandra Pinheiro Góes Carneiro ◽  
Emilio de Castro Miguel ◽  
...  

Author(s):  
Irem OZAY-ARANCIOGLU ◽  
Hatice BEKIROGLU ◽  
Ayse KARADAG ◽  
Oznur SAROGLU ◽  
Zeynep Hazal TEKIN-ÇAKMAK ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2646
Author(s):  
Yuanhang Yao ◽  
Jiaxing Jansen Lin ◽  
Xin Yi Jolene Chee ◽  
Mei Hui Liu ◽  
Saif A. Khan ◽  
...  

Inadequate intake of lutein is relevant to a higher risk of age-related eye diseases. However, lutein has been barely incorporated into foods efficiently because it is prone to degradation and is poorly bioaccessible in the gastrointestinal tract. Microfluidics, a novel food processing technology that can control fluid flows at the microscale, can enable the efficient encapsulation of bioactive compounds by fabricating suitable delivery structures. Hence, the present study aimed to evaluate the stability and the bioaccessibility of lutein that is encapsulated in a new noodle-like product made via microfluidic technology. Two types of oils (safflower oil (SO) and olive oil (OL)) were selected as a delivery vehicle for lutein, and two customized microfluidic devices (co-flow and combination-flow) were used. Lutein encapsulation was created by the following: (i) co-flow + SO, (ii) co-flow + OL, (iii) combination-flow + SO, and (iv) combination-flow + OL. The initial encapsulation of lutein in the noodle-like product was achieved at 86.0 ± 2.7%. Although lutein’s stability experienced a decreasing trend, the retention of lutein was maintained above 60% for up to seven days of storage. The two types of device did not result in a difference in lutein bioaccessibility (co-flow: 3.1 ± 0.5%; combination-flow: 3.6 ± 0.6%) and SO and OL also showed no difference in lutein bioaccessibility (SO: 3.4 ± 0.8%; OL: 3.3 ± 0.4%). These results suggest that the types of oil and device do not affect the lutein bioaccessibility. Findings from this study may provide scientific insights into emulsion-based delivery systems that employ microfluidics for the encapsulation of bioactive compounds into foods.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 715 ◽  
Author(s):  
Carolina Cantele ◽  
Olga Rojo-Poveda ◽  
Marta Bertolino ◽  
Daniela Ghirardello ◽  
Vladimiro Cardenia ◽  
...  

The cocoa bean shell (CBS), a cocoa by-product, contains a significant number of bioactive compounds with functional properties, such as polyphenols and methylxanthines, and is used as an ingredient in beverages and foods. In this work, the bioaccessibility of polyphenols and methylxanthines after In Vitro digestion was evaluated in new flavoured beverages for at-home consumption (capsules and tea bags). In addition, the polyphenolic composition, functional properties (antiradical and α-glucosidase inhibition capacities) and consumer acceptability of these beverages were evaluated. In both capsule and tea bag beverages, the bioaccessibility of methylxanthines was 100% while that of total polyphenols exceeded 50%. The main polyphenols determined using reverse-phase liquid chromatography were type B procyanidins and epicatechin. The antiradical activity in capsule and tea bag beverages was 1.75 and 1.88 mM of Trolox equivalents, respectively, of which 59.50% and 57.09% were recovered after simulated digestion. The percentage of α-glucosidase inhibition before In Vitro digestion (51.64% and 53.82% for capsules and tea bags, respectively) was comparable to that of acarbose at 0.5 mM. All the beverages obtained a high consumer acceptability. Therefore, these results highlight that CBSs can be used as a valid source of bioactive compounds in the preparation of beverages with homemade techniques.


2021 ◽  
pp. 101018
Author(s):  
Thatyane Vidal Fonteles ◽  
Elenilson Godoy Alves Filho ◽  
Maria Karolina de Araújo Barroso ◽  
Maria de Fátima Dantas Linhares ◽  
Maria Cristiane Rabelo ◽  
...  

2019 ◽  
Vol 293 ◽  
pp. 408-417 ◽  
Author(s):  
Natalia S. Podio ◽  
María V. Baroni ◽  
Gabriela T. Pérez ◽  
Daniel A. Wunderlin

Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1483 ◽  
Author(s):  
Nieves Baenas ◽  
Jenny Ruales ◽  
Diego A. Moreno ◽  
Daniel Alejandro Barrio ◽  
Carla M. Stinco ◽  
...  

The aim of this study was to evaluate Andean blueberries (Vaccinium floribundum Kunth) from Ecuador as a potential functional ingredient for the food and pharmaceutical industries. The analysis of bioactive compounds by HPLC–DAD–MSn determined a high content of (poly)phenols, mainly anthocyanins, and the presence of the carotenoid lutein. Regarding its biological properties, Andean blueberry did not show toxicity by the zebrafish embryogenesis test, showing also a lack of the antinutrients lectins. Moreover, the results of in vitro and in vivo antioxidant capacity evaluation suggested its possibility to be used as natural antioxidant. This fruit also exhibited antimicrobial activity toward Staphylococcus aureus and Escherichia coli in low doses. Finally, in vitro gastrointestinal (GI) digestion showed a partial bioaccessibility of (poly) phenols (~50% at the final step), showing high antioxidant capacity in the different GI phases. These results revealed Andean blueberry as an interesting candidate for being used as a functional ingredient and the development of further in vivo and clinical assays.


Author(s):  
V. Ramadas ◽  
G. Chandralega

Sponges, exclusively are aquatic and mostly marine, are found from the deepest oceans to the edge of the sea. There are approximately 15,000 species of sponges in the world, of which, 150 occur in freshwater, but only about 17 are of commercial value. A total of 486 species of sponges have been identified in India. In the Gulf of Mannar and Palk Bay a maximum of 319 species of sponges have been recorded. It has been proved that marine organisms are excellent source of bioactive secondary metabolites and number of compounds of originated from marine organisms had been reported to possess in-vitro and in-vivo immuno stimulatory activity. Extracts from 20 sponge species were tested for bacterial symbionts and bioactive compounds were isolated from such associated bacterial species in the present study.


Sign in / Sign up

Export Citation Format

Share Document