Effect of non-covalent binding of phenolic derivatives with scallop (Patinopecten yessoensis) gonad protein isolates on protein structure and in vitro digestion characteristics

2021 ◽  
Vol 357 ◽  
pp. 129690
Author(s):  
Jiarun Han ◽  
Yinan Du ◽  
Jianan Yan ◽  
Xinyu Jiang ◽  
Haitao Wu ◽  
...  
2020 ◽  
Vol 20 (23) ◽  
pp. 2106-2117
Author(s):  
Martin Krátký ◽  
Šárka Štěpánková ◽  
Michaela Brablíková ◽  
Katarína Svrčková ◽  
Markéta Švarcová ◽  
...  

Background: Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias’ treatment. Objective: Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors. Methods: Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman’s method. We calculated also physicochemical and structural parameters for CNS delivery. Results: The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes. Conclusion: Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.


2020 ◽  
Vol 328 ◽  
pp. 127126 ◽  
Author(s):  
Stefano Nebbia ◽  
Marzia Giribaldi ◽  
Laura Cavallarin ◽  
Enrico Bertino ◽  
Alessandra Coscia ◽  
...  

2019 ◽  
Vol 141 ◽  
pp. 240-246 ◽  
Author(s):  
Hui Zhang ◽  
Zhi Li ◽  
Yanjun Tian ◽  
Zibo Song ◽  
Lianzhong Ai

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


2021 ◽  
Vol 140 ◽  
pp. 110054
Author(s):  
Pablo Gallego-Lobillo ◽  
Alvaro Ferreira-Lazarte ◽  
Oswaldo Hernández-Hernández ◽  
Mar Villamiel

Sign in / Sign up

Export Citation Format

Share Document