Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets

2021 ◽  
pp. 131856
Author(s):  
Hui Zhang ◽  
Guilin Chen ◽  
Yongli Zhang ◽  
Mei Yang ◽  
Jinming Chen ◽  
...  
2017 ◽  
Vol 22 (4) ◽  
pp. 251-262 ◽  
Author(s):  
Shasika Jayarathne ◽  
Iurii Koboziev ◽  
Oak-Hee Park ◽  
Wilna Oldewage-Theron ◽  
Chwan-Li Shen ◽  
...  

2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


2018 ◽  
Vol 9 (3) ◽  
pp. 1601-1611 ◽  
Author(s):  
Qiuhui Hu ◽  
Biao Yuan ◽  
Hang Xiao ◽  
Liyan Zhao ◽  
Xian Wu ◽  
...  

Edible mushrooms are rich sources of bioactive components.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1683
Author(s):  
Ilaria Pappalardo ◽  
Anna Santarsiero ◽  
Maria De Luca ◽  
Maria Assunta Acquavia ◽  
Simona Todisco ◽  
...  

The peppers of the Capsicum species are exploited in many fields, as flavoring agents in food industry, or as decorative and therapeutic plants. Peppers show a diversified phytochemical content responsible for different biological activities. Synergic activity exerted by high levels of antioxidant compounds is responsible for their important anti-inflammatory property. A methanolic extract was obtained from a new pepper genotype and tested for anti-inflammatory activity. The extract was incorporated into phospholipid vesicles to increase the bioavailability of its bioactive components. Two types of phospholipid vesicles were produced, conventional liposomes and Penetration Enhancer containing Vesicles (PEVs). They were tested in human monoblastic leukemia U937 cell line, showing no cytotoxic effect. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were measured to value the in vitro efficacy of the vesicles in regulating inflammatory responses. Liposomal incorporation significantly reduced ROS levels in extract-treated LPS-activated cells. Furthermore, LC-MS/MS analyses demonstrated that liposomes facilitated the transport of the extract components across the cell membrane and their accumulation into the cytoplasm.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 334
Author(s):  
Hannah Land Lail ◽  
Rafaela G. Feresin ◽  
Dominique Hicks ◽  
Blakely Stone ◽  
Emily Price ◽  
...  

Inflammation that accompanies obesity is associated with the infiltration of metabolically active tissues by inflammatory immune cells. This propagates a chronic low-grade inflammation associated with increased signaling of common inflammatory pathways such as NF-κB and Toll-like receptor 4 (TLR4). Obesity-associated inflammation is linked to an increased risk of chronic diseases, including type 2 diabetes, cardiovascular disease, and cancer. Preclinical rodent and cell culture studies provide robust evidence that berries and their bioactive components have beneficial effects not only on inflammation, but also on biomarkers of many of these chronic diseases. Berries contain an abundance of bioactive compounds that have been shown to inhibit inflammation and to reduce reactive oxygen species. Therefore, berries represent an intriguing possibility for the treatment of obesity-induced inflammation and associated comorbidities. This review summarizes the anti-inflammatory properties of blackberries, blueberries, strawberries, and raspberries. This review highlights the anti-inflammatory mechanisms of berries and their bioactive components that have been elucidated through the use of preclinical models. The primary mechanisms mediating the anti-inflammatory effects of berries include a reduction in NF-κB signaling that may be secondary to reduced oxidative stress, a down-regulation of TLR4 signaling, and an increase in Nrf2.


2019 ◽  
Vol 6 (6) ◽  
pp. 190266
Author(s):  
Ji-Young Kim ◽  
Ju-Young Yoon ◽  
Yuki Sugiura ◽  
Soo-Kyoung Lee ◽  
Jae-Don Park ◽  
...  

Treatment of multiple sclerosis is effective when anti-inflammatory, neuroprotective and regenerative strategies are combined. Dendropanax morbiferus ( DM ) has anti-inflammatory, anti-oxidative properties, which may be beneficial for multiple sclerosis. However, there have been no reports on the effects of DM on myelination, which is critical for regenerative processes. To know whether DM benefits myelination, we checked differentiation and myelination of oligodendrocytes (OLs) in various primary culture systems treated with DM leaf EtOH extracts or control. DM extracts increased the OL membrane size in the mixed glial and pure OL precursor cell (OPC) cultures and changed OL-lineage gene expression patterns in the OPC cultures. Western blot analysis of DM -treated OPC cultures showed upregulation of MBP and phosphorylation of ERK1/2. In myelinating cocultures, DM extracts enhanced OL differentiation, followed by increased axonal contacts and myelin gene upregulations such as Myrf, CNP and PLP. Phytochemical analysis by LC-MS/MS identified multiple components from DM extracts, containing bioactive molecules such as quercetin, cannabidiol, etc. Our results suggest DM extracts enhance OL differentiation, followed by an increase in membrane size and axonal contacts, thereby indicating enhanced myelination. In addition, we found that DM extracts contain multiple bioactive components, warranting further studies in relation to finding effective components for enhancing myelination.


Sign in / Sign up

Export Citation Format

Share Document