High pressure homogenization followed by thermal processing of tomato pulp: Influence on microstructure and lycopene in vitro bioaccessibility

2010 ◽  
Vol 43 (8) ◽  
pp. 2193-2200 ◽  
Author(s):  
Ines Colle ◽  
Sandy Van Buggenhout ◽  
Ann Van Loey ◽  
Marc Hendrickx
2011 ◽  
Vol 76 (9) ◽  
pp. H215-H225 ◽  
Author(s):  
Cecilia A. Svelander ◽  
Patricia Lopez-Sanchez ◽  
Paul D.A. Pudney ◽  
Stephan Schumm ◽  
Marie A.G. Alminger

2020 ◽  
Vol 331 ◽  
pp. 127259
Author(s):  
Carla M. Stinco ◽  
Enrique Sentandreu ◽  
Paula Mapelli-Brahm ◽  
José L. Navarro ◽  
Isabel M. Vicario ◽  
...  

2018 ◽  
Vol 18 (1) ◽  
pp. 10-15
Author(s):  
Wang Yi-Wei ◽  
He Yong-Zhao ◽  
An Feng-Ping ◽  
Huang Qun ◽  
Zeng Feng ◽  
...  

In this study, Chinese yam starch-water suspension (8%) were subjected to high-pressure homogenization (HPH) at 100 MPa for increasing cycle numbers, and its effect of on the physicochemical properties of the starch was investigated. Results of the polarizing microscope observations showed that the starch granules were disrupted (i.e. greater breakdown value) after HPH treatment, followed by a decrease in cross polarization. After three HPH cycles, the crystallinity of starch decreased, while the crystal type remained unaltered. Meanwhile, the contents of rapidly digestible starch and slowly digestible starch were increased. On the contrary, resistant starch content was decreased. Our results indicate that HPH treatment resulted in reduction of starch crystallinity and increase of starch digestibility.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1256
Author(s):  
Hansol Kim ◽  
Ah Hyun Jung ◽  
Sung Hee Park ◽  
Yohan Yoon ◽  
Beob Gyun Kim

The objectives of the present study were to determine the influence of thermal and non-thermal processing procedures on in vitro ileal disappearance (IVID) of dry matter (DM) and crude protein (CP) in chicken meat as dog foods using 2-step in vitro assays. In thermal processing experiments, IVID of DM and CP in chicken meat thermally processed at 70, 90, and 121 °C, respectively, with increasing processing time was determined. For non-thermal processing experiments, IVID of DM and CP in chicken meat processed by high-pressure, ultraviolet-light emitting diode (UV-LED), electron-beam, and gamma-ray was determined. Thermal processing of chicken meat at 70, 90, and 121 °C resulted in decreased IVID of CP (p < 0.05) as heating time increased. In non-thermal processing experiment, IVID of CP in chicken meat was not affected by high-pressure processing or UV-LED radiation. In vitro ileal disappearance of CP in electron-beam- or gamma-ray-irradiated chicken meat was not affected by the irradiation intensity. Taken together, ileal protein digestibility of chicken meat for dogs is decreased by thermal processing, but is minimally affected by non-thermal processing methods.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 371 ◽  
Author(s):  
Zebin Guo ◽  
Beibei Zhao ◽  
Liding Chen ◽  
Baodong Zheng

Lotus seed starch (LS), dispersed (3%, w/v) in deionized water was homogenized (0–180 MPa) with high-pressure homogenization (HPH) for 15 min. The effects of HPH treatment on the physicochemical properties of the starch system were investigated. The properties were affected by HPH to various extents, depending on the pressure. These influences can be explained by the destruction of the crystalline and amorphous regions of pressurized LS. The short-range order of LS was reduced by HPH and starch structure C-type was transformed into B-type, exhibiting lower transition temperatures and enthalpy. The LS absorbed a great deal of water under HPH and rapidly swelled, resulting in increased swelling power, solubility and size distribution. It then showed “broken porcelain-like” morphology with reduced pasting properties. Digestion of pressurized LS complex investigated by a dynamic in vitro rat stomach–duodenum model showed higher digestion efficiency and the residues exhibited gradual damage in morphology.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 599 ◽  
Author(s):  
Sara Cunha ◽  
Cláudia Pina Costa ◽  
Joana A. Loureiro ◽  
Jorge Alves ◽  
Andreia F. Peixoto ◽  
...  

Rivastigmine is a drug commonly used in the management of Alzheimer’s disease that shows bioavailability problems. To overcome this, the use of nanosystems, such as nanostructured lipid carriers (NLC), administered through alternative routes seems promising. In this work, we performed a double optimization of a rivastigmine-loaded NLC formulation for direct drug delivery from the nose to the brain using the quality by design (QbD) approach, whereby the quality target product profile (QTPP) was the requisite for nose to brain delivery. The experiments started with the optimization of the formulation variables (or critical material attributes—CMAs) using a central composite design. The rivastigmine-loaded NLC formulations with the best critical quality attributes (CQAs) of particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE) were selected for the second optimization, which was related to the production methods (ultrasound technique and high-pressure homogenization). The most suitable instrumental parameters for the production of NLC were analyzed through a Box–Behnken design, with the same CQAs being evaluated for the first optimization. For the second part of the optimization studies, were selected two rivastigmine-loaded NLC formulations: one produced by ultrasound technique and the other by the high-pressure homogenization (HPH) method. Afterwards, the pH and osmolarity of these formulations were adjusted to the physiological nasal mucosa values and in vitro drug release studies were performed. The results of the first part of the optimization showed that the most adequate ratios of lipids and surfactants were 7.49:1.94 and 4.5:0.5 (%, w/w), respectively. From the second part of the optimization, the results for the particle size, PDI, ZP, and EE of the rivastigmine-loaded NLC formulations produced by ultrasound technique and HPH method were, respectively, 114.0 ± 1.9 nm and 109.0 ± 0.9 nm; 0.221 ± 0.003 and 0.196 ± 0.007; −30.6 ± 0.3 mV and −30.5 ± 0.3 mV; 97.0 ± 0.5% and 97.2 ± 0.3%. Herein, the HPH was selected as the most suitable production method, although the ultrasound technique has also shown effectiveness. In addition, no significant changes in CQAs were observed after 90 days of storage of the formulations at different temperatures. In vitro studies showed that the release of rivastigmine followed a non-Fickian mechanism, with an initial fast drug release followed by a prolonged release over 48 h. This study has optimized a rivastigmine-loaded NLC formulation produced by the HPH method for nose-to-brain delivery of rivastigmine. The next step is for in vitro and in vivo experiments to demonstrate preclinical efficacy and safety. QbD was demonstrated to be a useful approach for the optimization of NLC formulations for which specific physicochemical requisites can be identified.


Sign in / Sign up

Export Citation Format

Share Document