Seasonal water use by Larix principis-rupprechtii in an alpine habitat

2018 ◽  
Vol 409 ◽  
pp. 47-55 ◽  
Author(s):  
Yi-Ping Zhang ◽  
Yuan Jiang ◽  
Biao Wang ◽  
Liang Jiao ◽  
Ming-chang Wang
2021 ◽  
Vol 13 (2) ◽  
pp. 807
Author(s):  
Wanrui Zhu ◽  
Wenhua Li ◽  
Peili Shi ◽  
Jiansheng Cao ◽  
Ning Zong ◽  
...  

Understanding how soil water source is used spatiotemporally by tree species and if native species can successfully coexist with introduced species is crucial for selecting species for afforestation. In the rocky mountainous areas of the Taihang Mountains, alien Robinia pseudoacacia L. has been widely afforested into the native shrublands dominated by Ziziphus jujuba Mill var. spinosa and Vitex negundo L. var. heterophylla to improve forest coverage and soil nutrients. However, little is known about the water relation among species, especially seasonal water use sources in different microsites. We selected the soil and plant xylem samples of two opposite microtopographic sites (ridge and valley) monthly in the growth season to analyze isotope composition. The proportions of water sources were quantified by the MixSIAR model and compared pairwise between species, microsites and seasons. We found that deep subsoil water at a depth of 40–50 cm contributed up to 50% of the total water uptake for R. pseudoacacia and Z. jujuba in the growing season, indicating that they stably used deeper soil water and had intense water competition. However, V. negundo had a more flexible water use strategy, which derived more than 50% of the total water uptake from the soil layer of 0–10 cm in the rainy season, but majorly captured soil water at a depth of 30–50 cm in the dry season. Therefore, high niche overlaps were shown in V. negundo with the other two species in the dry season, but niche segregation was seen in the rainy season. The microtopographic sites did not shift the seasonal dynamic of the water source use patterns of the three studied species, but the water use niche overlap was higher in the valley than in the ridge. Taken together, the introduced species R. pseudoacacia intensified water competition with the native semi-arbor species Z. jujuba, but it could commonly coexist with the native shrub species V. negundo. Therefore, our study on seasonal water use sources in different microsites provides insight into species interaction and site selection for R. pseudoacacia afforestation in the native shrub community in rocky mountainous areas. It is better to plant R. pseudoacacia in the shrubland in the valley so as to avoid intense water competition and control soil erosion.


2015 ◽  
Vol 25 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Jeffrey G. Williamson ◽  
Luis Mejia ◽  
Bradley Ferguson ◽  
Paul Miller ◽  
Dorota Z. Haman

Nonweighing drainage lysimeters were used to measure seasonal water use of mature ‘Emerald’ southern highbush blueberry (SHB; Vaccinium corymbosum interspecific hybrid) plants grown in pine bark beds and in pine bark amended soil in north central Florida. In the absence of rain, irrigation was applied daily with microsprinklers at ≈120% to 175% of reference evapotranspiration as either single or split applications. Leachate was collected and its volume determined from each lysimeter at 6- to 10-day intervals throughout the study. Water use, expressed as L/plant, was calculated as the difference between the amount of irrigation/rain added to lysimeters and the amount of leachate collected from lysimeters during each measurement period. Average daily water use was calculated for monthly intervals beginning in Apr. 2010 and ending in Sept. 2012. Water use increased rapidly during spring through the final stages of fruit ripening and harvest (May) with peak water use occurring during mid to late summer (July, August, and September). Plants grown in pine bark beds used more water than plants in pine bark amended soil during Apr., May, and Dec. 2010, Feb. 2011, and Mar. 2012, but there were no differences during the periods of highest water use. No differences in water use were observed between single or split-application irrigation treatments. Monthly averages for daily water use during the 30-month period ranged from ≈1.75 L/plant in January to ≈8.0 L/plant in mid to late summer. Mean monthly crop coefficient values during the 30-month period ranged from 0.44 in February to 0.86 in September. Canopy volume, yield, and mean berry weight were unaffected by soil or irrigation treatments.


1993 ◽  
Vol 118 (5) ◽  
pp. 562-569 ◽  
Author(s):  
Horst W. Caspari ◽  
M. Hossein Behhoudian ◽  
David J. Chalmers ◽  
A. Richard Renquist

Seasonal water use data are presented for 4-year-old Pyrus serotina Rehder cv. Hosui growing in drainage lysimeters and trained onto a Tatura trellis. Weekly water use (WU) was calculated using the mass balance approach. For 8 consecutive weeks during late summer, instantaneous WU was also measured by the compensation heat-pulse technique for measuring sap flow. Although good agreement was found between the two methods for 4 weeks after probe installation, discrepancies increased after this time. Water use was highest in early to mid-January in New Zealand, averaging ≈8 liters/tree per day, or 2 liters·m-2 canopy surface area/day. Total water use over the growing season was 1070 liters/tree, or 245 liters·m-2 canopy surface area. The correlation coefficient between weekly WU and evaporation from a nearby Class A pan was 0.81 for the season. Weekly crop coefficients thus calculated for the well-watered trees ranged from 0.15 to 0.55 and 0.20 to 0.83 when calculated using canopy surface area and projected ground area, respectively. Low values were due to low values of canopy leaf area early in the season. Withholding irrigation during three periods resulted in a gradual decline in water use. Water-stressed trees had a lower predawn water potential than fully irrigated trees. This pattern was followed by a more-rapid decline during the morning, and a slower recovery during late afternoon and early evening. Midday leaf water potential never fell below -2.5 MPa.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2230
Author(s):  
Mariam Al-Bahouh ◽  
Vern Osborne ◽  
Tom Wright ◽  
Mike Dixon ◽  
Andrew VanderZaag ◽  
...  

The blue water footprint (WF) is an indicator of freshwater required to produce a given end product. Determining the blue WF for milk production, the seasonal water use and the impact of water conservation are important sustainability considerations for the dairy industry in Ontario (Canada). In this study, a water footprint network (WFN) method was used to calculate the seasonal blue WF’s from in-barn water use data and the fat–protein-corrected milk (FPCM) production. Various water conservation options were estimated using the AgriSuite software. Results showed that the total water use (L of water·cow−1·d−1) and the average blue WF (L of water·kg−1 of FPCM) were 246.3 ± 6.8 L·cow−1·d−1 and 7.4 ± 0.2 L·kg−1, respectively. The total water use and the blue WF could be reduced to 182.7 ± 5.1 L·cow−1·d−1 (25.8% reduction) and 5.8 ± 0.1 L·kg−1 (21.6% reduction), respectively, through adaptive water conservation measures as the reuse of the plate cooler and milk house water. For example, conservation practices could reduce the milk house wash water use from 74.3 ± 8.8 L·cow−1·d−1 to 16.6 ± 0.1 L·cow−1·d−1 (77.7% overall reduction).


2000 ◽  
Vol 6 (1) ◽  
Author(s):  
T. Lakatos ◽  
T. Bubán

Present paper describes an investigation concerning seasonal water use and foliage area development of apple trees. Sap flow velocity was measured in the trunks of five years old apple trees cv. `Florina'/M.26 by a thermal dissipation (Granier) method from 20th of May to the end of September in 1998. The development of foliage area was estimated by a method including leaf area measurements, recording of leaves and shoot length. The foliage area reached to 70% of the maximum yearly value at beginning of June. The remaining 30% developed to the end of August. The leaf area specific water use was considerable higher in June and July, than in second part of summer. The trends of ET-FAO and water use curves differed mostly in the late season: the ET-FAO curve falls quite in September compared to August, whereas the value of water use was a similar as in August. This insensitivity of ET-FAO in this period may be a great disadvantage while using the Penman-Monteith equation in irrigation scheduling of apple.


1983 ◽  
Vol 63 (4) ◽  
pp. 855-860 ◽  
Author(s):  
E. H. HOBBS ◽  
H.-H. MUENDEL

Field experiments were conducted from 1979 to 1982 in southern Alberta to determine the seasonal water use of soybeans. Soil moisture was determined every 5–6 days throughout the growing season and irrigation water was applied when soil moisture tension in the top 30 cm reached −40 kPa, with an additional treatment of −60 kPa for 1980 and 1981. Seasonal water use in a year of normal growth (1980) varied from 426 to 482 mm for the drier and wetter treatments, respectively. The drier treatments in 1980 and 1981 resulted in more efficient use of water. Low early-season water use with peak use after full pod development (R4) was defined. Water use peaked in late July to early August with a requirement of 7 mm/day. Small changes in seed quality, tending towards higher protein and lower oil under wetter conditions, are corroborated in the literature. The possibility of integrating crop and cultivar selection with appropriate irrigation management to improve production efficiency in southern Alberta is discussed. The late-peak water requirement of soybeans combines well with the early-peak use of cereal crops to ensure efficient seasonal irrigation management.Key words: Glycine max (L.) Merr., évapotranspiration, seed protein, seed oil


Sign in / Sign up

Export Citation Format

Share Document