In vivo effects of propolis, a honeybee product, on gilthead seabream innate immune responses

2005 ◽  
Vol 18 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Alberto Cuesta ◽  
Alejandro Rodríguez ◽  
M. Ángeles Esteban ◽  
José Meseguer
2014 ◽  
Vol 68 ◽  
pp. 44-52 ◽  
Author(s):  
Constanze Pietsch ◽  
Christian Michel ◽  
Susanne Kersten ◽  
Hana Valenta ◽  
Sven Dänicke ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Gaël Auray ◽  
Stephanie C. Talker ◽  
Irene Keller ◽  
Sylvie Python ◽  
Markus Gerber ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-36
Author(s):  
Yvonne Junker ◽  
Donatella Barisani ◽  
Daniel A. Leffler ◽  
Towia Libermann ◽  
Simon T. Dillon ◽  
...  

2014 ◽  
Vol 134 (1) ◽  
pp. 127-134.e9 ◽  
Author(s):  
Stephen C. Gale ◽  
Li Gao ◽  
Carmen Mikacenic ◽  
Susette M. Coyle ◽  
Nicholas Rafaels ◽  
...  

2009 ◽  
Vol 9 (11) ◽  
pp. 1313-1322 ◽  
Author(s):  
Jill C. Graff ◽  
Emily M. Kimmel ◽  
Brett Freedman ◽  
Igor A. Schepetkin ◽  
Jeff Holderness ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1103 ◽  
Author(s):  
Luca D. Bertzbach ◽  
Olof Harlin ◽  
Sonja Härtle ◽  
Frank Fehler ◽  
Tereza Vychodil ◽  
...  

Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease, a malignant lymphoproliferative disease of domestic chickens. While MDV vaccines protect animals from clinical disease, they do not provide sterilizing immunity and allow field strains to circulate and evolve in vaccinated flocks. Therefore, there is a need for improved vaccines and for a better understanding of innate and adaptive immune responses against MDV infections. Interferons (IFNs) play important roles in the innate immune defenses against viruses and induce upregulation of a cellular antiviral state. In this report, we quantified the potent antiviral effect of IFNα and IFNγ against MDV infections in vitro. Moreover, we demonstrate that both cytokines can delay Marek’s disease onset and progression in vivo. Additionally, blocking of endogenous IFNα using a specific monoclonal antibody, in turn, accelerated disease. In summary, our data reveal the effects of IFNα and IFNγ on MDV infection and improve our understanding of innate immune responses against this oncogenic virus.


2011 ◽  
Vol 204 (7) ◽  
pp. 1104-1114 ◽  
Author(s):  
Juliene G. Co ◽  
Kenneth W. Witwer ◽  
Lucio Gama ◽  
M. Christine Zink ◽  
Janice E. Clements

2021 ◽  
Vol 17 (7) ◽  
pp. e1009733
Author(s):  
Jiangnan Li ◽  
Jie Song ◽  
Li Kang ◽  
Li Huang ◽  
Shijun Zhou ◽  
...  

Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1β maturation and IFN-β promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1β and IFN-β compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1β production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1β production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1β and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuhki Indo ◽  
Shugo Kitahara ◽  
Mikado Tomokiyo ◽  
Shota Araki ◽  
Md. Aminul Islam ◽  
...  

Previously, we constructed a library of Ligilactobacillus salivarius strains from the intestine of wakame-fed pigs and reported a strain-dependent capacity to modulate IFN-β expression in porcine intestinal epithelial (PIE) cells. In this work, we further characterized the immunomodulatory activities of L. salivarius strains from wakame-fed pigs by evaluating their ability to modulate TLR3- and TLR4-mediated innate immune responses in PIE cells. Two strains with a remarkable immunomodulatory potential were selected: L. salivarius FFIG35 and FFIG58. Both strains improved IFN-β, IFN-λ and antiviral factors expression in PIE cells after TLR3 activation, which correlated with an enhanced resistance to rotavirus infection. Moreover, a model of enterotoxigenic E. coli (ETEC)/rotavirus superinfection in PIE cells was developed. Cells were more susceptible to rotavirus infection when the challenge occurred in conjunction with ETEC compared to the virus alone. However, L. salivarius FFIG35 and FFIG58 maintained their ability to enhance IFN-β, IFN-λ and antiviral factors expression in PIE cells, and to reduce rotavirus replication in the context of superinfection. We also demonstrated that FFIG35 and FFIG58 strains regulated the immune response of PIE cells to rotavirus challenge or ETEC/rotavirus superinfection through the modulation of negative regulators of the TLR signaling pathway. In vivo studies performed in mice models confirmed the ability of L. salivarius FFIG58 to beneficially modulate the innate immune response and protect against ETEC infection. The results of this work contribute to the understanding of beneficial lactobacilli interactions with epithelial cells and allow us to hypothesize that the FFIG35 or FFIG58 strains could be used for the development of highly efficient functional feed to improve immune health status and reduce the severity of intestinal infections and superinfections in weaned piglets.


Sign in / Sign up

Export Citation Format

Share Document