Antibacterial activity and mechanism of the cell-penetrating peptide CF-14 on the gram-negative bacteria, Escherichia coli

2020 ◽  
Vol 100 ◽  
pp. 489-495
Author(s):  
Tingting Li ◽  
Quanwei Liu ◽  
Haitao Chen ◽  
Jianrong Li
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2374
Author(s):  
Paula C. Alves ◽  
Patrícia Rijo ◽  
Catarina Bravo ◽  
Alexandra M. M. Antunes ◽  
Vânia André

We report herein three novel complexes whose design was based on the approach that consists of combining commercially available antibiotics with metals to attain different physicochemical properties and promote antimicrobial activity. Thus, new isostructural three-dimensional (3D) hydrogen bonding frameworks of pipemidic acid with manganese (II), zinc (II) and calcium (II) have been synthesised by mechanochemistry and are stable under shelf conditions. Notably, the antimicrobial activity of the compounds is maintained or even increased; in particular, the activity of the complexes is augmented against Escherichia coli, a representative of Gram-negative bacteria that have emerged as a major concern in drug resistance. Moreover, the synthesised compounds display similar general toxicity (Artemia salina model) levels to the original antibiotic, pipemidic acid. The increased antibacterial activity of the synthesised compounds, together with their appropriate toxicity levels, are promising outcomes.


2018 ◽  
Vol 24 (6) ◽  
pp. 327-332 ◽  
Author(s):  
Yogesh D. Mane ◽  
Smita S. Patil ◽  
Dhanraj O. Biradar ◽  
Bhimrao C. Khade

Abstract Ten 5-bromoindole-2-carboxamides were synthesized, characterized and evaluated for antibacterial activity against pathogenic Gram-negative bacteria Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Salmonella Typhi using gentamicin and ciprofloxacin as internal standards. Compounds 7a–c, 7g and 7h exhibit high antibacterial activity with a minimum inhibitory concentration (MIC) of 0.35–1.25 μg/mL. Compounds 7a–c exhibit antibacterial activities that are higher than those of the standards against E. coli and P. aeruginosa.


2017 ◽  
Vol 9 (2) ◽  
pp. 45 ◽  
Author(s):  
Bahareh Behmaram ◽  
Naser Foroughifar ◽  
Neda Foroughifar ◽  
Sara Hallajian

The synthesis of some 1,3-diazoles and thiazoles was realized in different conditions:a) In the presence of PTSA or sulfuric acid as catalyst we obtained only diazole products(4a-d).b) In basic medium such as DABCO or sodium hydroxide and ionic liquid afforded thiazoles.c) Both products, diazoles and thiazoles were collected when using methanol as catalyst and solvent.All structures were confirmed by IR, 1H NMR and 13C NMR spectroscopy. The antibacterial activity of some synthesized compounds was investigated against Escherichia Coli (ATCC: 25922) and Serratia marcescens (ATCC: 13880) as gram negative bacteria, Bacillus sabtilis (ATCC: 6633) and Staphylococcus aureus (ATCC: 6338) as gram positive bacteria. Some of these products exhibit good activities to significant antibacterial activity.


2013 ◽  
Vol 78 (9) ◽  
pp. 1323-1333 ◽  
Author(s):  
Garima Matela ◽  
Robina Aman ◽  
Chetan Sharma ◽  
Smita Chaudhary

A new series of diisopropyloxytin- and triorganotin(IV) complexes of H2hbgl (1) of the general formula Sn(OPri)2(hbgl) (2), Sn(OPri)2(Hhbgl)2 (3), Ph3Sn(Hhbgl) (4), Bu3Sn(Hhbgl) (5) and Me3Sn(Hhbgl) (6), [where H2hbgl= a ligand of thymol derivative namely, N-(2-hydroxy-3-isopropyl-6-methyl benzyl)Glycine] were synthesized by reacting tin- and triorganotin(IV) chloride with the ligand, with the aid of sodium iso-propoxide in appropriate stiochiometric ratios (1:1 and 1:2). These complexes were characterized by elemental analysis, IR, 1H nuclear magnetic resonance. The spectral data suggest that the carboxylate group, in complexes 2-5, was bonded in a bidentate manner, while a unidentate bonding was observed in complex 6. All five complexes were tested in vitro for their antibacterial activity against Gram-positive bacteria namely, Staphylococcus aureus MTCC 96, Bacillus subtilis MTCC 121 and two Gram-negative bacteria namely, Escherichia coli MTCC 1652 and Pseudomonas aeruginosa MTCC 741. All the five complexes were also tested against three pathogenic fungal strains namely, Aspergillus niger, A. flavus and Penicillium sp.


2011 ◽  
Vol 6 (5) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Janne Rojas ◽  
Alexis Buitrago ◽  
Luis Rojas ◽  
Antonio Morales ◽  
María Lucena ◽  
...  

The essential oil from the fruits of Vismia baccifera Triana & Planch. (Gutttiferae), collected in June 2009, was analyzed by GC/MS. A yield of 0.6% oil was obtained by hydrodistillation. Twenty-seven components were identified by comparison of their mass spectra with those in the Wiley GC-MS Library data base. The major components were trans-cadin-1,4-diene (36.6%), cis-cadin-1,4-diene (18.8%) and β-caryophyllene (11.9%). The essential oil showed a broad spectrum of antibacterial activity against the important human pathogenic Gram-positive and Gram-negative bacteria Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25992), Pseudomonas aeruginosa (ATCC 27853) and Klebsiella pneumoniae (ATCC 23357) with MIC values ranging from 9 to 37 μg/mL.


2021 ◽  
Vol 33 (11) ◽  
pp. 2662-2666
Author(s):  
Amnuay Noypha ◽  
Paweena Porrawatkul ◽  
Nongyao Teppaya ◽  
Parintip Rattanaburi ◽  
Saksit Chanthai ◽  
...  

Borassus flabellifer vinegar–graphene quantum dots (BFV-GQDs) were successfully synthesized using a pyrolysis method with Borassus flabellifer vinegar (BFV) as the precursor. All the samples were characterized using ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activities of BFV-GQDs against strains of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were determined using the agar well diffusion method for preliminary screening, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth macro-dilution method. The zones of inhibition were compared with those of citric acid–graphene quantum dots (CA-GQDs). It was observed that the synthesized BFV-GQDs demonstrated excellent antibacterial activity against Staphylococcus aureus (82.3%) and good antibacterial activity against Escherichia coli (73.3%). The MIC of BFV-GQDs against E. coli was 6.25 mg/mL and S. aureus was 12.5 mg/mL, whereas the MBC of BFV-GQDs against E. coli was 12.5 mg/mL and S. aureus was 25.0 mg/mL.


RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 40734-40744 ◽  
Author(s):  
Min Li ◽  
Bingjie Mai ◽  
Ao Wang ◽  
Yiru Gao ◽  
Xiaobing Wang ◽  
...  

Cationic phthalocyanines (Pcs) combine with photodynamic antimicrobial chemotherapy (PACT) presents excellent antibacterial activity to Gram-negative bacteriaE. coli.


Sign in / Sign up

Export Citation Format

Share Document