An experimental and modeling study to investigate effects of different injection parameters on a direct injection HCCI combustion fueled with ethanol–gasoline fuel blends

Fuel ◽  
2018 ◽  
Vol 215 ◽  
pp. 879-891 ◽  
Author(s):  
Gokhan Coskun ◽  
Usame Demir ◽  
Hakan S. Soyhan ◽  
Ali Turkcan ◽  
Ahmet N. Ozsezen ◽  
...  
2015 ◽  
Vol 187 (4) ◽  
pp. 642-658 ◽  
Author(s):  
Ali Turkcan ◽  
Ahmet Necati Ozsezen ◽  
Mustafa Canakci ◽  
Gokhan Coskun ◽  
Hakan Serhad Soyhan ◽  
...  

2012 ◽  
Author(s):  
Mitsuo Asanuma ◽  
Akira Iijima ◽  
Koji Yoshida ◽  
Hideo Shoji ◽  
Go Emori

2020 ◽  
Vol 34 (11) ◽  
pp. 14796-14813
Author(s):  
Jingrui Li ◽  
Xinlei Liu ◽  
Haifeng Liu ◽  
Ying Ye ◽  
Hu Wang ◽  
...  

Author(s):  
Hongsheng Guo ◽  
W. Stuart Neill ◽  
Wally Chippior ◽  
Hailin Li ◽  
Joshua D. Taylor

Homogeneous charge compression ignition (HCCI) is an advanced low-temperature combustion technology being considered for internal combustion engines due to its potential for high fuel conversion efficiency and extremely low emissions of particulate matter and oxides of nitrogen (NOx). In its simplest form, HCCI combustion involves the auto-ignition of a homogeneous mixture of fuel, air, and diluents at low to moderate temperatures and high pressure. Previous research has indicated that fuel chemistry has a strong impact on HCCI combustion. This paper reports the preliminary results of an experimental and modeling study of HCCI combustion using n-heptane, a volatile hydrocarbon with well known fuel chemistry. A Co-operative Fuel Research (CFR) engine was modified by the addition of a port fuel injection system to produce a homogeneous fuel-air mixture in the intake manifold, which contributed to a stable and repeatable HCCI combustion process. Detailed experiments were performed to explore the effects of critical engine parameters such as intake temperature, compression ratio, air/fuel ratio, engine speed, turbocharging, and intake mixture throttling on HCCI combustion. The influence of these parameters on the phasing of the low-temperature reaction, main combustion stage, and negative temperature coefficient delay period are presented and discussed. A single-zone numerical simulation with detailed fuel chemistry was developed and validated. The simulations show good agreement with the experimental data and capture important combustion phase trends as engine parameters are varied.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Akhilendra Pratap Singh ◽  
Avinash Kumar Agarwal

Fuel injection parameters such as fuel injection pressure (FIP) and start of main injection (SoMI) timings significantly affect the performance and emission characteristics of a common rail direct injection (CRDI) diesel engine. In this study, a state-of-the-art single cylinder research engine was used to investigate the effects of fuel injection parameters on combustion, performance, emission characteristics, and particulates and their morphology. The experiments were carried out at three FIPs (400, 700, and 1000 bar) and four SoMI timings (4 deg, 6 deg, 8 deg, and 10 deg bTDC) for biodiesel blends [B20 (20% v/v biodiesel and 80% v/v diesel) and B40 (40% v/v biodiesel and 60% v/v diesel)] compared to baseline mineral diesel. The experiments were performed at a constant engine speed (1500 rpm), without pilot injection and exhaust gas recirculation (EGR). The experimental results showed that FIP and SoMI timings affected the in-cylinder pressure and the heat release rate (HRR), significantly. At higher FIPs, the biodiesel blends resulted in slightly higher rate of pressure rise (RoPR) and combustion noise compared to baseline mineral diesel. All the test fuels showed relatively shorter combustion duration at higher FIPs and advanced SoMI timings. The biodiesel blends showed slightly higher NOx and smoke opacity compared to baseline mineral diesel. Lower particulate number concentration at higher FIPs was observed for all the test fuels. However, biodiesel blends showed emission of relatively higher number of particulates compared to baseline mineral diesel. Significantly lower trace metals in the particulates emitted from biodiesel blend fueled engine was an important finding of this study. The particulate morphology showed relatively smaller number of primary particles in particulate clusters from biodiesel exhaust, which resulted in relatively lower toxicity, rendering biodiesel to be more environmentally benign.


2019 ◽  
Vol 22 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Ripudaman Singh ◽  
Taehoon Han ◽  
Mohammad Fatouraie ◽  
Andrew Mansfield ◽  
Margaret Wooldridge ◽  
...  

The effects of a broad range of fuel injection strategies on thermal efficiency and engine-out emissions (CO, total hydrocarbons, NOx and particulate number) were studied for gasoline and ethanol fuel blends. A state-of-the-art production multi-cylinder turbocharged gasoline direct injection engine equipped with piezoelectric injectors was used to study fuels and fueling strategies not previously considered in the literature. A large parametric space was considered including up to four fuel injection events with variable injection timing and variable fuel mass in each injection event. Fuel blends of E30 (30% by volume ethanol) and E85 (85% by volume ethanol) were compared with baseline E0 (reference grade gasoline). The engine was operated over a range of loads with intake manifold absolute pressure from 800 to 1200 mbar. A combined application of ethanol blends with a multiple injection strategy yielded considerable improvement in engine-out particulate and gaseous emissions while maintaining or slightly improving engine brake thermal efficiency. The weighted injection spread parameter defined in this study, combined with the weighted center of injection timing defined in the previous literature, was found well suited to characterize multiple injection strategies, including the effects of the number of injections, fuel mass in each injection and the dwell time between injections.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1845 ◽  
Author(s):  
Haifeng Liu ◽  
Xichang Wang ◽  
Diping Zhang ◽  
Fang Dong ◽  
Xinlu Liu ◽  
...  

The effects of three kinds of oxygenated fuel blends—i.e., ethanol-gasoline, n-butanol-gasoline, and 2,5-dimethylfuran (DMF)-gasoline-on fuel consumption, emissions, and acceleration performance were investigated in a passenger car with a chassis dynamometer. The engine mounted in the vehicle was a four-cylinder, four-stroke, turbocharging gasoline direct injection (GDI) engine with a displacement of 1.395 L. The test fuels include ethanol-gasoline, n-butanol-gasoline, and DMF-gasoline with four blending ratios of 20%, 50%, 75%, and 100%, and pure gasoline was also tested for comparison. The original contribution of this article is to systemically study the steady-state, transient-state, cold-start, and acceleration performance of the tested fuels under a wide range of blending ratios, especially at high blending ratios. It provides new insight and knowledge of the emission alleviation technique in terms of tailoring the biofuels in GDI turbocharged engines. The results of our works showed that operation with ethanol–gasoline, n-butanol–gasoline, and DMF–gasoline at high blending ratios could be realized in the GDI vehicle without any modification to its engine and the control system at the steady state. At steady-state operation, as compared with pure gasoline, the results indicated that blending n-butanol could reduce CO2, CO, total hydrocarbon (THC), and NOX emissions, which were also decreased by employing a higher blending ratio of n-butanol. However, a high fraction of n-butanol increased the volumetric fuel consumption, and so did the DMF–gasoline and ethanol–gasoline blends. A large fraction of DMF reduced THC emissions, but increased CO2 and NOX emissions. Blending n-butanol can improve the equivalent fuel consumption. Moreover, the particle number (PN) emissions were significantly decreased when using the high blending ratios of the three kinds of oxygenated fuels. According to the results of the New European Drive Cycle (NEDC) cycle, blending 20% of n-butanol with gasoline decreased CO2 emissions by 5.7% compared with pure gasoline and simultaneously reduced CO, THC, NOX emissions, while blending ethanol only reduced NOX emissions. PN and particulate matter (PM) emissions decreased significantly in all stages of the NEDC cycle with the oxygenated fuel blends; the highest reduction ratio in PN was 72.87% upon blending 20% ethanol at the NEDC cycle. The high proportion of n-butanol and DMF improved the acceleration performance of the vehicle.


Author(s):  
Sok Ratnak ◽  
Jin Kusaka ◽  
Yasuhiro Daisho ◽  
Kei Yoshimura ◽  
Kenjiro Nakama

Gasoline Direct Injection Homogeneous Charge Compression (GDI-HCCI) combustion is achieved by closing early the exhaust valves for trapping hot residual gases combined with direct fuel injection. The combustion is chemically controlled by multi-point auto-ignition which its main combustion phase can be controlled by direct injection timing of fuel. This work investigates the effect of single pulse injection timing on a supercharged GDI-HCCI combustion engine by using a four-stroke single cylinder engine with a side-mounted direct fuel injector. Injection of primary reference fuel PRF90 under the near-stoichiometric-boosted condition is studied. The fuel is injected during negative valve overlap (NVO) or recompression period for fuel reformation under low oxygen concentration and the injection is retarded to intake stroke for the homogeneous mixture. It is found that the early fuel injection in NVO period advances the combustion phasing compared with the retarded injection in the intake stroke. Noticeable slower combustion rate from intake stroke fuel injection is obtained compared with the NVO injection due to charge cooling effect. Zero-dimensional combustion simulations with multiple chemical reaction mechanisms are simulated to provide chemical understanding from the effect of fuel injection timing on intermediate species generations. The species such as C2H4, C3H6, CH4, and H2 are found to be formed during the NVO injection period from the calculations. The effects of single pulse injection timings on combustion characteristics such pressure rise rate, combustion stability, and emissions are also discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document