An experimental investigation of the effects of fuel injection strategy on the efficiency and emissions of a heavy-duty engine at high load with gasoline compression ignition

Fuel ◽  
2018 ◽  
Vol 220 ◽  
pp. 437-445 ◽  
Author(s):  
Xionghui Zou ◽  
Weiwei Liu ◽  
Zhanglei Lin ◽  
Binyang Wu ◽  
Wanhua Su
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3717
Author(s):  
Nikita Zuev ◽  
Andrey Kozlov ◽  
Alexey Terenchenko ◽  
Kirill Karpukhin ◽  
Ulugbek Azimov

Using biodiesel fuel in diesel engines for heavy-duty transport is important to meet the stringent emission regulations. Biodiesel is an oxygenated fuel and its physical and chemical properties are close to diesel fuel, yet there is still a need to analyze and tune the fuel injection parameters to optimize the combustion process and emissions. A four-injections strategy was used: two pilots, one main and one post injection. A highly advanced SOI decreases the NOx and the compression work but makes the combustion process less efficient. The pilot injection fuel mass influences the combustion only at injection close to the top dead center during the compression stroke. The post injection has no influence on the compression work, only on the emissions and the indicated work. An optimal injection strategy was found to be: pilot SOI 19.2 CAD BTDC, pilot injection fuel mass 25.4%; main SOI 3.7 CAD BTDC, main injection fuel mass 67.3% mg; post SOI 2 CAD ATDC, post injection fuel mass 7.3% (the injection fuel mass is given as a percentage of the total fuel mass injected). This allows the indicated work near the base case level to be maintained, the pressure rise rate to decrease by 20% and NOx emissions to decrease by 10%, but leads to a 5% increase in PM emissions.


2006 ◽  
Vol 128 (2) ◽  
pp. 377-387 ◽  
Author(s):  
Koudai Yoshizawa ◽  
Atsushi Teraji ◽  
Hiroshi Miyakubo ◽  
Koichi Yamaguchi ◽  
Tomonori Urushihara

In this research, combustion characteristics of gasoline compression ignition engines have been analyzed numerically and experimentally with the aim of expanding the high load operation limit. The mechanism limiting high load operation under homogeneous charge compression ignition (HCCI) combustion was clarified. It was confirmed that retarding the combustion timing from top dead center (TDC) is an effective way to prevent knocking. However, with retarded combustion, combustion timing is substantially influenced by cycle-to-cycle variation of in-cylinder conditions. Therefore, an ignition timing control method is required to achieve stable retarded combustion. Using numerical analysis, it was found that ignition timing control could be achieved by creating a fuel-rich zone at the center of the cylinder. The fuel-rich zone works as an ignition source to ignite the surrounding fuel-lean zone. In this way, combustion consists of two separate auto-ignitions and is thus called two-step combustion. In the simulation, the high load operation limit was expanded using two-step combustion. An engine system identical to a direct-injection gasoline (DIG) engine was then used to validate two-step combustion experimentally. An air-fuel distribution was created by splitting fuel injection into first and second injections. The spark plug was used to ignite the first combustion. This combustion process might better be called spark-ignited compression ignition combustion (SI-CI combustion). Using the spark plug, stable two-step combustion was achieved, thereby validating a means of expanding the operation limit of gasoline compression ignition engines toward a higher load range.


Author(s):  
Gong Chen

It is always desirable for a heavy-duty compression-ignition engine, such as a diesel engine, to possess a capability of using alternate liquid fuels without significant hardware modification to the engine baseline. Because fuel properties vary between various types of liquid fuels, it is important to understand the impact and effects of the fuel properties on engine operating and output parameters. This paper intends and attempts to achieve that understanding and to predict the qualitative effects by studying analytically and qualitatively how a heavy-duty compression-ignition engine would respond to the variation of fuel properties. The fuel properties considered in this paper mainly include the fuel density, compressibility, heating value, viscosity, cetane number, and distillation temperature range. The qualitative direct and end effects of the fuel properties on engine bulk fuel injection, in-cylinder combustion, and outputs are analyzed and predicted. Understanding these effects can be useful in analyzing and designing a compression-ignition engine for using alternate liquid fuels.


2019 ◽  
pp. 146808741986701 ◽  
Author(s):  
Santiago Molina ◽  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
David Villalta

From the different power plants, the compression ignition diesel engines are considered the best alternative to be used in the transport sector due to its high efficiency. However, the current emission standards impose drastic reductions for the main pollutants, that is, NO x and soot, emitted by this type of engines. To accomplish with these restrictions, alternative combustion concepts as the premixed charge compression ignition are being investigated nowadays. The objective of this work is to evaluate the impact of different fuel injection strategies on the combustion performance and engine-out emissions of the premixed charge compression ignition combustion regime. For that, experimental measurements were carried out in a single-cylinder medium-duty compression ignition diesel engine at low-load operation. Different engine parameters as the injection pattern timing, main injection timing and main injection fuel quantity were sweep. The best injection strategy was determined by means of a methodology based on the evaluation of a merit function. The results suggest that the best injection strategy for the low-load premixed charge compression ignition operating condition investigated implies using a high injection pressure and a triple-injection event with a delayed main injection with almost 15% of the total fuel mass injected.


Author(s):  
Khanh Cung ◽  
Stephen Ciatti

Many studies have shown that gasoline compression ignition (GCI) can replace conventional diesel combustion (CDC) by achieving high efficiency and low smoke and toxic gaseous emissions simultaneously. This is due to the low cetane number of gasoline that results in long ignition delay, allowing very advanced injection timing. This gives even longer time for fuel-air mixing, thus resulting in locally lean combustion that produces low particulate matter (PM). However, GCI operation faces challenges at high engine load condition. At high load conditions, large amounts of fuel injected early for premixed combustion can lead to high combustion noise from premixed combustion. Meanwhile, more fuel late injected late leads to poor mixing, hence higher smoke. Multiple injections can offer the flexibility in controlling the in-cylinder fuel stratification level. In this study, moderate to high engine loads of 8 to 14 bar BMEP were accomplished by utilizing an optimal multiple injection scheme. Injection timing of pilot, main, and post injections was investigated individually for its effect on the emission and engine performance. A moderate level of exhaust gas recirculating (EGR) was used to achieve low temperature combustion (LTC) condition. While higher EGR reduced NOx significantly due to lower combustion temperature, it affected the maximum boost that could be acquired by the turbocharger due to the reduction in exhaust enthalpy. During the engine load/speed sweep, calculations of combustion, thermodynamics, gas exchange, and mechanical efficiencies were analyzed to identify factor that needs to be improved for GCI operation. This study also demonstrates the importance of injection strategy including high injection pressure to attain high load points with low smoke and low noise.


Sign in / Sign up

Export Citation Format

Share Document