scholarly journals Effects of Various Fuels on Combustion and Emission Characteristics of a Four-Stroke Dual-Fuel Marine Engine

2021 ◽  
Vol 9 (10) ◽  
pp. 1072
Author(s):  
Van Chien Pham ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Won-Ju Lee ◽  
Jae-Hyuk Choi

A numerical study was carried out to investigate the effects of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), and dimethyl ether (DME) on the combustion and emission characteristics of a four-stroke gas-diesel dual-fuel (DF) marine engine at full load. Three-dimensional simulations of the combustion process and emission formation inside the engine cylinder in the diesel and DF modes were performed using the AVL FIRE R2018a simulation software to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results agreed well with the measured values reported in the engine shop test technical data. The simulation results showed reductions in the in-cylinder peak pressure and temperatures, as well as the emission formations, in the DF modes in comparison to the diesel mode. The DF mode could significantly reduce nitric oxide (NO) emissions (up to 96.225%) of DME compared to the diesel mode. Meanwhile, C3H8 and CH4 fuels effectively reduced the soot (up to 82.78%) and carbon dioxide (CO2) emissions (by 21.33%), respectively, compared to the diesel mode. However, the results also showed longer ignition delay times of the combustion processes when the engine operated in the DF mode, particularly in the DME-diesel mode. The combustion and emission characteristics of the engine were also analyzed when varying the injection timing; the results showed that applying the injection timing adjustment method could further address NO emission problems but led to a decrease in the engine power. Therefore, it is necessary to consider the benefits and disadvantages of adopting the injection timing adjustment strategy to address certain engine emission problems. This study successfully analyzed the benefits of using various gas fuels as alternative fuels and the injection timing adjustment method in DF marine engines to meet the International Maritime Organization (IMO) emission regulations without the use of any emission after-treatment devices.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6821
Author(s):  
Ju-Hwan Seol ◽  
Van Chien Pham ◽  
Won-Ju Lee

This paper presents research on the effects of the multiple injection strategies on the combustion and emission characteristics of a two-stroke heavy-duty marine engine at full load. The ANSYS FLUENT simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both single- and double-injection modes to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed good agreement with the measured values reported in the engine’s sea-trial technical reports. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 6.42% and 12.76%, while NO and soot emissions were reduced up to 24.16% and 68%, respectively, in the double-injection mode in comparison with the single-injection mode. However, the double-injection strategy increased the CO2 emission (7.58%) and ISFOC (23.55%) compared to the single-injection. These are negative effects of the double-injection strategy on the engine that the operators need to take into consideration. The results were in line with the literature reviews and would be good material for operators who want to reduce the engine exhaust gas emission in order to meet the stricter IMO emission regulations.


2020 ◽  
Vol 8 (5) ◽  
pp. 316
Author(s):  
Jinkyu Park ◽  
Iksoo Choi ◽  
Jungmo Oh ◽  
Changhee Lee

As concerns regarding environmental pollution, energy security and future oil supply continue to grow, communities around the world are looking for non-petroleum-based alternative fuels along with advanced energy technologies (e.g., fuel cells) to increase energy use efficiency. Compared with the main alternative fuel candidates (e.g., methane, methanol, ethanol and Fischer–Tropsch fuels), dimethyl ether (DME) seems to have a significant potential to solve the aforementioned problems and can be used as a clean, high-efficiency compressed ignition fuel with reduced nitrogen oxide, sulphur oxide and particulate matter (PM) emissions. In this study, the results of experiments using a ship engine and numerical analysis were verified using AVL BOOST software. Based on these verifications, nitrogen oxide and PM reduction characteristics were numerically analysed by controlling the diameter and spraying time of the fuel nozzle, which is the fuel injection system of a marine engine. When DME fuel was used, nitrogen oxide and PM emissions were reduced by 40% and 90%, respectively, compared with marine diesel oil fuel. To prove the viability of DME as an alternative fuel, combustion and exhaust characteristics were analysed in accordance with injection timing and the variation of nozzle hole.


2014 ◽  
Vol 525 ◽  
pp. 227-231 ◽  
Author(s):  
Min Xiao ◽  
Chun Long Feng

In order to solve the problem of Diesel natural gas dual fuel engine, such as power reduction, low charging efficiency, the conception of diesel engine fueled with pilot-ignited directly-injected liquefied natural gas is put forward. On the basis of this theory, a medium speed diesel of the marine is refitted into dual fuel engine, in order to keep original power, decrease the temperature of combustion and reduce emission. The LNG injection timing, duration of LNG injection and the different ratios the pilot diesel to total energy are studied the method of AVL FIRE software. Conclusions are as follows: When the different ratios pilot diesel to total energy is 0.5%, the engine can not work; Delaying the LNG injection timing, shortening the LNG injection duration and choose the right ratios pilot diesel to total energy can reach the indicated power of original machine, and the NOx emissions level will be greatly reduced.


2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


Sign in / Sign up

Export Citation Format

Share Document