Effect of water on the separation of phenol from model oil with choline chloride via forming deep eutectic solvent

2015 ◽  
Vol 137 ◽  
pp. 104-108 ◽  
Author(s):  
Shu-Hang Ren ◽  
Ying Xiao ◽  
Yi-Ming Wang ◽  
Jie Kong ◽  
Yu-Cui Hou ◽  
...  
Environments ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 97
Author(s):  
Chiau Yuan Lim ◽  
Mohd Faridzuan Majid ◽  
Sarrthesvaarni Rajasuriyan ◽  
Hayyiratul Fatimah Mohd Zaid ◽  
Khairulazhar Jumbri ◽  
...  

Extractive catalytic oxidative desulfurization (ECODS) is the one of the recent methods used in fuel desulfurization which involved the use of catalyst in the oxidative desulfurization of diesel fuel. This study is aimed to test the effectiveness of synthesized choline chloride (ChCl) based deep eutectic solvent (DES) in fuel desulfurization via ECODS method, with the presence of graphene oxide (GO) as catalyst and hydrogen peroxide (H2O2) as oxidant. In this study, 16 DESs based on choline chloride were synthesized using glycerol (GLY), ethylene glycol (EG), tetraethylene glycol (TEG) and polyethylene glycol (PEG). The characterization of the synthesized DES was carried out via Fourier transform infrared spectroscopy (FTIR) analysis, density, and viscosity determination. According to the screening result, ChCl-PEG (1:4) was found to be the most effective DES for desulfurization using ECODS method, with a removal of up to 47.4% of sulfur containing compounds in model oil in just 10 min per cycle after the optimization of the reaction parameters, and up to 95% desulfurization efficiency could be achieved by six cycles of desulfurization. It is found that the addition of GO as catalyst does not increase the desulfurization performance drastically; hence, future studies for the desulfurization performance of DESs made up from ChCl and PEG and its derivatives can be done simply by using extraction desulfurization (EDS) method instead of ECODS method, for cost reduction purpose and easier regulation of DES waste into environment.


2016 ◽  
Vol 12 ◽  
pp. 1-4 ◽  
Author(s):  
David O. Oseguera-Galindo ◽  
Roberto Machorro-Mejia ◽  
Nina Bogdanchikova ◽  
Josue D. Mota-Morales

2021 ◽  
Vol 60 (5) ◽  
pp. 2011-2026
Author(s):  
Eng Kein New ◽  
Ta Yeong Wu ◽  
Khai Shing Voon ◽  
Alessandra Procentese ◽  
Katrina Pui Yee Shak ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1170
Author(s):  
Yuan Zhu ◽  
Benkun Qi ◽  
Xinquan Liang ◽  
Jianquan Luo ◽  
Yinhua Wan

Herein, corn stover (CS) was pretreated by less corrosive lewis acid FeCl3 acidified solutions of neat and aqueous deep eutectic solvent (DES), aqueous ChCl and glycerol at 120 °C for 4 h with single FeCl3 pretreatment as control. It was unexpected that acidified solutions of both ChCl and glycerol were found to be more efficient at removing lignin and xylan, leading to higher enzymatic digestibility of pretreated CS than acidified DES. Comparatively, acidified ChCl solution exhibited better pretreatment performance than acidified glycerol solution. In addition, 20 wt% water in DES dramatically reduced the capability of DES for delignification and xylan removal and subsequent enzymatic cellulose saccharification of pretreated CS. Correlation analysis showed that enzymatic saccharification of pretreated CS was highly correlated to delignification and cellulose crystallinity, but lowly correlated to xylan removal. Recyclability experiments of different acidified pretreatment solutions showed progressive decrease in the pretreatment performance with increasing recycling runs. After four cycles, the smallest decrease in enzymatic cellulose conversion (22.07%) was observed from acidified neat DES pretreatment, while the largest decrease (43.80%) was from acidified ChCl pretreatment. Those findings would provide useful information for biomass processing with ChCl, glycerol and ChCl-glycerol DES.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2149
Author(s):  
Chan-Woo Park ◽  
Song-Yi Han ◽  
Rajkumar Bandi ◽  
Ramakrishna Dadigala ◽  
Eun-Ah Lee ◽  
...  

In this study, the effect of lignin esterification with fatty acid chloride on the properties of lignin and lignin/poly(lactic acid) (PLA) composites was investigated. Lignocellulose (Pinus densiflora S. et Z.) was treated using a deep eutectic solvent (DES) with choline chloride (ChCl)/lactic acid (LA). From the DES-soluble fraction, DES-lignin (DL) was isolated by a regeneration process. Lignin esterification was conducted with palmitoyl chloride (PC). As the PC loading increased for DL esterification, the Mw of esterified DL (EDL) was increased, and the glass transition temperature (Tg) was decreased. In DL or EDL/PLA composite films, it was observed that EDL/PLA had cleaner and smoother morphological characteristics than DL/PLA. The addition of DL or EDL in a PLA matrix resulted in a deterioration of tensile properties as compared with neat PLA. The EDL/PLA composite film had a higher tensile strength and elastic modulus than the DL/PLA composite film. DL esterification decreased water absorption with lower water diffusion coefficients. The effect of lignin esterification on improving the compatibility of lignin and PLA was demonstrated. These results are expected to contribute to the development of high-strength lignin composites.


2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.


2021 ◽  
Vol 255 ◽  
pp. 117443
Author(s):  
Huiqiang Wang ◽  
Jiachen Li ◽  
Xin Yu ◽  
Guihua Yan ◽  
Xing Tang ◽  
...  

2021 ◽  
Vol 56 (5) ◽  
Author(s):  
Lucie Percevault ◽  
Thomas Delhaye ◽  
Alain Chaumont ◽  
Rachel Schurhammer ◽  
Ludovic Paquin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document