Lumbopelvic coordination while walking in Service members with unilateral lower limb loss: Comparing variabilities derived from vector coding and continuous relative phase

Author(s):  
Joseph G. Wasser ◽  
Julian C. Acasio ◽  
Ross H. Miller ◽  
Brad D. Hendershot
2010 ◽  
Vol 43 (13) ◽  
pp. 2554-2560 ◽  
Author(s):  
Ross H. Miller ◽  
Ryan Chang ◽  
Jennifer L. Baird ◽  
Richard E.A. Van Emmerik ◽  
Joseph Hamill

Author(s):  
HYUK-JAE CHOI ◽  
GYOOSUK KIM ◽  
CHANG-YONG KO

In order to calculate the continuous relative phase (CRP) between joints, the portrait method based on the joint angle and angular velocity and the Hilbert transform method based on the analytical signal have been widely used. However, there are few comparisons of these methods. Therefore, the aim of this study is to quantitatively compare these methods by calculating the CRP in the lower-limb joints of the elderly during level free walking. Eighteen elderly female adults ([Formula: see text] year-old, [Formula: see text][Formula: see text]cm, [Formula: see text][Formula: see text]kg) wearing a Helen Hayes full-body marker set walked 10[Formula: see text]m on level ground at a self-selected velocity. The angles of the hip, knee, and ankle were measured. To calculate the CRP using the portrait method, the angular velocities were measured. Then, the phases between the angle and the angular velocity were calculated. To calculate the CRP using the Hilbert transform method, analytical signals were acquired. Then, the phases between the real and imaginary parts were calculated. A CRP was calculated as the difference between the phase in the proximal joint and the phase in the distal joint. To evaluate the similarity in the shape between the portrait and Hilbert transform methods, the cross-correlation was calculated. Bland–Altman plot analyses were performed to assess the agreement between these methods. For the root mean squares (RMSs) and standard deviations (SDs), a paired [Formula: see text]-test and the Pearson correlation between methods were evaluated. There were similarities in the in-phase or out-of-phase features and in the RMS and SD between the methods. Additionally, a higher cross-correlation and agreement between them were found. These results indicated the similarity between the portrait and Hilbert transform methods for the calculation of the CRP. Therefore, either method can be used to evaluate joint coordination.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3340
Author(s):  
Chang-Yong Ko ◽  
Yunhee Chang ◽  
Bora Jeong ◽  
Sungjae Kang ◽  
Jeicheong Ryu ◽  
...  

The evaluation of multisegment coordination is important in gaining a better understanding of the gait and physical activities in humans. Therefore, this study aims to verify whether the use of knee sleeves affects the coordination of lower-limb segments during level walking and one-leg hopping. Eleven healthy male adults participated in this study. They were asked to walk 10 m on a level ground and perform one-leg hops with and without a knee sleeve. The segment angles and the response velocities of the thigh, shank, and foot were measured and calculated by using a motion analysis system. The phases between the segment angle and the velocity were then calculated. Moreover, the continuous relative phase (CRP) was calculated as the phase of the distal segment subtracted from the phase of the proximal segment and denoted as CRPTS (thigh–shank), CRPSF (shank–foot), and CRPTF (thigh–foot). The root mean square (RMS) values were used to evaluate the in-phase or out-of-phase states, while the standard deviation (SD) values were utilized to evaluate the variability in the stance and swing phases during level walking and in the preflight, flight, and landing phases during one-leg hopping. The walking velocity and the flight time improved when the knee sleeve was worn (p < 0.05). The segment angles of the thigh and shank also changed when the knee sleeve was worn during level walking and one-leg hopping. The RMS values of CRPTS and CRPSF in the stance phase and the RMS values of CRPSF in the preflight and landing phases changed (p < 0.05 in all cases). Moreover, the SD values of CRPTS in the landing phase and the SD values of CRPSF in the preflight and landing phases increased (p < 0.05 in all cases). These results indicated that wearing a knee sleeve caused changes in segment kinematics and coordination.


2020 ◽  
Vol 10 (12) ◽  
pp. 4072 ◽  
Author(s):  
Zhi Xu ◽  
Duo Wai-Chi Wong ◽  
Fei Yan ◽  
Tony Lin-Wei Chen ◽  
Ming Zhang ◽  
...  

The gait of transfemoral amputees can be made smoother by adjusting the inter-joint coordination of both lower limbs. In this study, we compared the inter-joint coordination of the amputated and non-amputated limbs of unilateral amputees to able-bodied controls. Eight amputees and eight able-bodied control participants were recruited. Walking speed, stance–swing time ratio, joint angle, joint angular velocity, and inter-joint coordination parameters—including continuous relative phase (CRP) and decomposition index (DI)—of the lower-limb joint pairs in stance and swing phases were investigated. Similarity of the CRP between groups was evaluated using cross-correlation measures and root-mean-square, and the variability of the CRP was examined by deviation phase (DP). There were significant differences between the amputated limbs and controls in CRP of hip–knee and knee–ankle in stance and swing, DP of knee–ankle and hip–ankle in stance, and DI of hip–knee in swing. For the non-amputated limbs, there were significant differences in CRP and DP of knee–ankle, and DI of hip–knee in swing compared to controls. The amputees utilized unique inter-joint coordination patterns for both limbs—particularly the hip joint—to compensate for the support-capability impairment due to limb salvage and ensure foot placement accuracy.


2019 ◽  
Vol 184 (11-12) ◽  
pp. e907-e913 ◽  
Author(s):  
Shawn Farrokhi ◽  
Brittney Mazzone ◽  
Jacqueline L Moore ◽  
Kaeley Shannon ◽  
Susan Eskridge

AbstractIntroductionMilitary service members with limb loss have unrestricted access to physical therapy (PT) services. Identifying PT interventions used based on clinical rationale and patient needs/goals can provide insight towards developing best practice guidelines. The purpose of this study was to identify preferred PT practice patterns for military service members with lower limb loss.Materials and MethodsThis was a retrospective cohort study and was approved by the Naval Health Research Center (NHRC) Institutional Review Board. Data for 495 service members with lower limb loss was analyzed. Frequency of PT visits and units of treatment received were quantified in 3-month increments during the first year after injury and compared for individuals with unilateral limb loss distal to the knee (DIST), unilateral limb loss proximal to the knee (PROX), and bilateral limb loss (BILAT).ResultsA total of 86,145 encounters occurred during the first year after injury. Active treatments were included in 94.0% of all treatments, followed by manual therapy (15.1%), patient education (11.5%) and modalities (2.4%). The highest number of encounters, consisting of active and manual therapy, was received by the DIST group within the first 3 months, while after the first 3 months, the BILAT group had higher encounters and received more active and manual therapy. Utilization of patient education was higher in the PROX and BILAT groups compared to the DIST group throughout the first year after injury.ConclusionsService members with limb loss utilize PT services often within the first year after injury. Trends of PT practice are most likely influenced by comorbidities and healing time variance between levels of amputation.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2960 ◽  
Author(s):  
Ross H. Miller ◽  
Rebecca L. Krupenevich ◽  
Alison L. Pruziner ◽  
Erik J. Wolf ◽  
Barri L. Schnall

BackgroundIndividuals with unilateral lower limb amputation have a high risk of developing knee osteoarthritis (OA) in their intact limb as they age. This risk may be related to joint loading experienced earlier in life. We hypothesized that loading during walking would be greater in the intact limb of young US military service members with limb loss than in controls with no limb loss.MethodsCross-sectional instrumented gait analysis at self-selected walking speeds with a limb loss group (N = 10, age 27 ± 5 years, 170 ± 36 days since last surgery) including five service members with transtibial limb loss and five with transfemoral limb loss, all walking independently with their first prosthesis for approximately two months. Controls (N = 10, age 30 ± 4 years) were service members with no overt demographical risk factors for knee OA. 3D inverse dynamics modeling was performed to calculate joint moments and medial knee joint contact forces (JCF) were calculated using a reduction-based musculoskeletal modeling method and expressed relative to body weight (BW).ResultsPeak JCF and maximum JCF loading rate were significantly greater in limb loss (184% BW, 2,469% BW/s) vs. controls (157% BW, 1,985% BW/s), with large effect sizes. Results were robust to probabilistic perturbations to the knee model parameters.DiscussionAssuming these data are reflective of joint loading experienced in daily life, they support a “mechanical overloading” hypothesis for the risk of developing knee OA in the intact limb of limb loss subjects. Examination of the evolution of gait mechanics, joint loading, and joint health over time, as well as interventions to reduce load or strengthen the ability of the joint to withstand loads, is warranted.


2016 ◽  
Vol 41 (2) ◽  
pp. 186-193 ◽  
Author(s):  
Alexandra P Frost ◽  
Tracy Norman Giest ◽  
Allison A Ruta ◽  
Teresa K Snow ◽  
Mindy Millard-Stafford

Background: Body composition is important for health screening, but appropriate methods for unilateral lower extremity amputees have not been validated. Objectives: To compare body mass index adjusted using Amputee Coalition equations (body mass index–Amputee Coalition) to dual-energy X-ray absorptiometry in unilateral lower limb amputees. Study design: Cross-sectional, experimental. Methods: Thirty-eight men and women with lower limb amputations (transfemoral, transtibial, hip disarticulation, Symes) participated. Body mass index (mass/height2) was compared to body mass index corrected for limb loss (body mass index–Amputee Coalition). Accuracy of classification and extrapolation of percent body fat with body mass index was compared to dual-energy X-ray absorptiometry. Results: Body mass index–Amputee Coalition increased body mass index (by ~ 1.1 kg/m2) but underestimated and mis-classified 60% of obese and overestimated 100% of lean individuals according to dual-energy X-ray absorptiometry. Estimated mean percent body fat (95% confidence interval) from body mass index–Amputee Coalition (28.3% (24.9%, 31.7%)) was similar to dual-energy X-ray absorptiometry percent body fat (29.5% (25.2%, 33.7%)) but both were significantly higher ( p < 0.05) than percent body fat estimated from uncorrected body mass index (23.6% (20.4%, 26.8%)). However, total errors for body mass index and body mass index–Amputee Coalition converted to percent body fat were unacceptably large (standard error of the estimate = 6.8%, 6.2% body fat) and the discrepancy between both methods and dual-energy X-ray absorptiometry was inversely related ( r = −0.59 and r = −0.66, p < 0.05) to the individual’s level of body fatness. Conclusions: Body mass index (despite correction) underestimates health risk for obese patients and overestimates lean, muscular individuals with lower limb amputation. Clinical relevance Clinical recommendations for an ideal body mass based on body mass index–Amputee Coalition should not be relied upon in lower extremity amputees. This is of particular concern for obese lower extremity amputees whose health risk might be significantly underestimated based on body mass index despite a “correction” formula for limb loss.


Sign in / Sign up

Export Citation Format

Share Document