Phylogenetic study, distribution of virulence genes and antibiotic resistance profiles of Escherichia coli isolated from Bushehr coastal water

Gene Reports ◽  
2021 ◽  
pp. 101473
Author(s):  
Zahra Rahimi ◽  
Yalda Malekzadegan ◽  
Abbas Bahador ◽  
Masoud Azimzadeh ◽  
Mohammad Ali Haghighi
2016 ◽  
Vol 15 (2) ◽  
pp. 196-208 ◽  
Author(s):  
Nicole M. Masters ◽  
Aaron Wiegand ◽  
Jasmin M. Thompson ◽  
Tara L. Vollmerhausen ◽  
Eva Hatje ◽  
...  

We investigated Escherichia coli populations in a metropolitan river after an extreme flood event. Between nine and 15 of the 23 selected sites along the river were sampled fortnightly over three rounds. In all, 307 E. coli were typed using the PhP typing method and were grouped into common (C) or single (S) biochemical phenotypes (BPTs). A representative from each of the 31 identified C-BPTs was tested for 58 virulence genes (VGs) associated with intestinal and extra-intestinal E. coli, resistance to 22 antibiotics, production of biofilm and cytotoxicity to Vero cells. The number of E. coli in the first sampling round was significantly (P < 0.01) higher than subsequent rounds, whereas the number of VGs was significantly (P < 0.05) higher in isolates from the last sampling round when compared to previous rounds. Comparison of the C-BPTs with an existing database from wastewater treatment plants (WWTPs) in the same catchment showed that 40.6% of the river isolates were identical to the WWTP isolates. The relatively high number of VGs and antibiotic resistance among the C-BPTs suggests possessing and retaining these genes may provide niche advantages for those naturalised and/or persistent E. coli populations which may pose a health risk to the community.


2021 ◽  
Author(s):  
Julie Marin ◽  
Olivier Clermont ◽  
Guilhem Royer ◽  
Melanie Mercier-Darty ◽  
Jean-Winoc Decousser ◽  
...  

Escherichia coli is a commensal species of the lower intestine, but also a major pathogen causing intestinal and extra-intestinal infections. Most studies on genomic evolution of E. coli used isolates from infections, and/or focused on antibiotic resistance, but neglected the evolution of virulence. Here instead, we whole-genome sequenced a collection of 436 E. coli isolated from fecal samples of healthy adult volunteers in France between 1980 and 2010. These isolates were distributed among 159 sequence types (STs), the five most frequent being ST10 (15.6%), ST73 (5.5%) and ST95 (4.8%), ST69 (3.7%) and ST59 (3.7%), and 230 O:H serotypes. ST and serotype diversity increased over time. Comparison with 912 E. coli bacteremia isolates from similar region and time showed a greater diversity in commensal isolates. The O1, O2, O6 and O25-groups used in bioconjugate O-antigen vaccine were found in only 63% of the four main STs associated with a high risk of bacteremia (ST69, ST73, ST95 and ST131). In commensals, STs associated with a high risk of bacteremia increased in frequency. Both extra-intestinal virulence-associated genes and resistance to antibiotics increased in frequency. Evolution of virulence genes was driven by both clonal expansion of STs with more virulence genes, and increases in frequency within STs, whereas the evolution of resistance was dominated by increases in frequency within STs. This study provides a unique picture of the phylogenomic evolution of E. coli in its human commensal habitat over a 30-year period and suggests that the efficacy of O-antigen vaccines would be threatened by serotype replacement.


2020 ◽  
Vol 8 (7) ◽  
pp. 1021 ◽  
Author(s):  
Samina Ievy ◽  
Md. Saiful Islam ◽  
Md. Abdus Sobur ◽  
Mithun Talukder ◽  
Md. Bahanur Rahman ◽  
...  

Avian pathogenic Escherichia coli (APEC) causes significant economic losses in poultry industries. Here, we determined for the first time in Bangladesh, the prevalence of APEC-associated virulence genes in E. coli isolated from layer farms and their antibiotic resistance patterns. A total of 99 samples comprising internal organs, feces, and air were collected from 32 layer farms. Isolation was performed by culturing samples on eosin–methylene blue agar plates, while the molecular detection of APEC was performed by PCR, and antibiograms were performed by disk diffusion. Among the samples, 36 were positive for the APEC-associated virulence genes fimC, iucD, and papC. Out of 36 isolates, 7, 18, and 11 were positive, respectively, for three virulence genes (papC, fimC, and iucD), two virulence genes, and a single virulence gene. Although the detection of virulence genes was significantly higher in the internal organs, the air and feces were also positive. The antibiograms revealed that all the isolates (100%) were resistant to ampicillin and tetracycline; 97.2%, to chloramphenicol and erythromycin; 55.5%, to enrofloxacin; 50.0%, to norfloxacin and ciprofloxacin; 19.4%, to streptomycin; 11.1%, to colistin; and 8.33%, to gentamicin. Interestingly, all the isolates were multidrug-resistant (MDR). Spearman’s rank correlation coefficient analysis revealed the strongest significant correlation between norfloxacin and ciprofloxacin resistance. This is the first study in Bangladesh describing the molecular detection of APEC in layer farms. Isolated APEC can now be used for detailed genetic characterization and assessing the impact on public health.


2009 ◽  
Vol 26 (8) ◽  
pp. 865-871 ◽  
Author(s):  
Nikolaos Solomakos ◽  
Alexandros Govaris ◽  
Apostolos S. Angelidis ◽  
Spyros Pournaras ◽  
Angeliki Rothi Burriel ◽  
...  

Gut Pathogens ◽  
2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Mujeeb Ur Rehman ◽  
Hui Zhang ◽  
Muhammad Kashif Iqbal ◽  
Khalid Mehmood ◽  
Shucheng Huang ◽  
...  

Author(s):  
Mahdis Ghavidel ◽  
Tahere Gholamhosseini-Moghadam ◽  
Kimiya Nourian ◽  
Kiarash Ghazvini

Background and Objectives: Escherichia coli is known to be the pathogen commonly isolated from those infected with uri- nary tract infections (UTIs). The aim of this study was to investigate the presence of E. coli virulence genes and antibiotics’ resistance pattern among clinical isolates in the Northeast of Iran. Relationships between virulence genes and antimicrobial resistances were studied as well. Materials and Methods: Three hundred isolates of E. coli were isolated from patients with UTIs that referred to Ghaem and Imam Reza hospitals (Mashhad, Iran) during August 2016 to February 2017. A multiplex PCR was employed to amplify the genes encoding pyelonephritis associated pili (pap), S-family adhesions (sfa), type1fimbriae (fimH) and aerobactin (aer). Disk diffusion test was performed to test the susceptibility of isolates to β-lactams, aminoglycosides, cephalosporins, quino- lone, fluoroquinolones, carbapenems and trimethoprim-sulfamethoxazole. Results: The PCR results identified the fimH in 78.4%, aer in 70.5%, sfa in 13.6% and the pap in 8.2% of isolates. The rates of antibiotic resistance of the isolates were as follows: 64.7% resistant to cephalosporins, 34% to trimethoprim-sul- famethoxazole, 31% to fluoroquinolones, 15.3% to aminoglycosides, 13.3% to β-lactams, 7.8% to quinolones and 4.4% to carbapenems. Significant relationships existed between pap and aer, pap and sfa, aer and fluoroquinolones also pap and cephalosporins. Conclusion: fimH and aer were found in > 50% of isolates suggesting the importance of both genes in UPEC. The majority of isolates had fimH as adhesion factor for colonization. Determining antibiotic resistance patterns in specific geographical areas is necessary for appropriate treatment of urinary tract infection. The high rate of resistance to cephalosporins is most likely due to incorrect drug administration


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


Author(s):  
Saroj Sankhi ◽  
Rebanta Kumar Bhattarai ◽  
Hom Bahadur Basnet ◽  
Nirmal Raj Marasine ◽  
Himal Luitel ◽  
...  

This study aimed to identify, evaluate the antibiotic resistance pattern and detect virulence genes iss, and ompT in avian pathogenic Escherichia coli (APEC) from broiler chickens in central Nepal. To determine the antibiotic resistance pattern of the obtained isolates, the Kirby-Bauer disc diffusion method was used with six different commercial antibiotic discs: Amikacin, Gentamycin, Ciprofloxacin, Doxycycline, Chloramphenicol and Levofloxacin. A polymerase chain reaction (PCR) assay was used for the selected isolates (n=40) to screen the presence of the iss and ompT genes after the extraction of DNA using the boiling method Out of 60 suspected Colibacillosis liver samples, 40 were confirmed as E. coli positive The antibiogram profile revealed maximum resistance to Doxycycline (87.5%), followed by Levofloxacin (72.5%), Ciprofloxacin (67.5%), Chloramphenicol (40.0%), Gentamycin (32.5%) and Amikacin (10.0%).. The presence of the iss and ompT genes was found to be 100.0% and 90.0%, respectively. APEC was found to be highly resistant to most of the antibiotics. Virulence-associated genes iss and ompT were obtained at high percentages from Colibacillosis suspected broiler chickens in Chitwan, Nepal. These finding suggests that the judicial use of antimicrobials is compulsory to check antibiotic resistance and Colibacillosis outbreaks in poultry farms.


Sign in / Sign up

Export Citation Format

Share Document