scholarly journals Stankiewicz-Isidor syndrome: expanding the clinical and molecular phenotype

Author(s):  
Bertrand Isidor ◽  
Frédéric Ebstein ◽  
Anna Hurst ◽  
Marie Vincent ◽  
Ingrid Bader ◽  
...  
Keyword(s):  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nathan L Absalom ◽  
Vivian W Y Liao ◽  
Kavitha Kothur ◽  
Dinesh C Indurthi ◽  
Bruce Bennetts ◽  
...  

Abstract Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.


2021 ◽  
Author(s):  
Danish Memon ◽  
Hira Rizvi ◽  
George Fromm ◽  
Jayon Lihm ◽  
Adam J Schoenfeld ◽  
...  

Although cancer immunotherapy with PD-(L)1 blockade is now routine treatment for patients with lung cancer, remarkably little is known about acquired resistance. We examined 1,201 patients with NSCLC treated with PD-(L)1 blockade to clinically characterize acquired resistance, finding it to be common (occurring in more than 60% of initial responders), with persistent but diminishing risk over time, and with distinct metastatic and survival patterns compared to primary resistance. To examine the molecular phenotype and potential mechanisms of acquired resistance, we performed whole transcriptome and exome tumor profiling in a subset of NSCLC patients (n=29) with acquired resistance. Systematic immunogenomic analysis revealed that tumors with acquired resistance generally had enriched signals of inflammation (including IFNγ signaling and inferred CD8+ T cells) and could be separated into IFNγ upregulated and stable subsets. IFNγ upregulated tumors had putative routes of resistance with signatures of dysfunctional interferon signaling and mutations in antigen presentation genes. Transcriptomic profiling of cancer cells from a murine model of acquired resistance to PD-(L)1 blockade also showed evidence of dysfunctional interferon signaling and acquired insensitivity to in vitro interferon gamma treatment. In summary, we characterized clinical and molecular features of acquired resistance to PD-(L)1 blockade in NSCLC and found evidence of ongoing but dysfunctional IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance informs therapeutic strategies to effectively reprogram and reverse acquired resistance.


2019 ◽  
Author(s):  
Mark Kalisz ◽  
Edgar Bernardo ◽  
Anthony Beucher ◽  
Miguel Angel Maestro ◽  
Natalia del Pozo ◽  
...  

AbstractDefects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding the histone demethylase UTX, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutations phenocopy Utx deficient mutations, and both synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic and biochemical studies to show that HNF1A recruits UTX to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates a differentiation program, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. Finally, we identify a subset of non-classical PDAC samples that exhibit the HNF1A/UTX-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A-deficiency promotes PDAC. They also connect the tumor suppressive role of UTX deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


2013 ◽  
Vol 53 (S1) ◽  
pp. E140-E150 ◽  
Author(s):  
Martha L. Slattery ◽  
Abbie Lundgreen ◽  
Roger K. Wolff

2018 ◽  
Vol 144 (9) ◽  
pp. 1769-1775 ◽  
Author(s):  
Claire M. B. Holloway ◽  
Li Jiang ◽  
Marlo Whitehead ◽  
Jennifer M. Racz ◽  
Patti A. Groome

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna Tkachev ◽  
Vita Stepanova ◽  
Lei Zhang ◽  
Ekaterina Khrameeva ◽  
Dmitry Zubkov ◽  
...  

AbstractHuman populations, despite their overwhelming similarity, contain some distinct phenotypic, genetic, epigenetic, and gene expression features. In this study, we explore population differences at yet another level of molecular phenotype: the abundance of non-polar and polar low molecular weight compounds, lipids and metabolites in the prefrontal cortical region of the brain. We assessed the abundance of 1,670 lipids and 258 metabolites in 146 Han Chinese, 97 Western European, and 60 African American individuals of varying ages, covering most of the lifespan. The statistical analysis and logistic regression models both demonstrated extensive lipid and metabolic divergence of the Han Chinese individuals from the other two populations. This divergence was age-dependent, peaking in young adults, and involved metabolites and lipids clustering in specific metabolic pathways.


Sign in / Sign up

Export Citation Format

Share Document