Rising minimum temperature trends over India in recent decades: Implications for agricultural production

2014 ◽  
Vol 117 ◽  
pp. 1-8 ◽  
Author(s):  
B. Bapuji Rao ◽  
P. Santhibhushan Chowdary ◽  
V.M. Sandeep ◽  
V.U.M. Rao ◽  
B. Venkateswarlu
Author(s):  
AWO Sourou Malikiyou ◽  
ALE Agbachi Georges ◽  
YABI Ibouraïma

La variabilité climatique dans les communes de Djidja et de Djougou engendre des conséquences aussi bien sur les niveaux de productivités, de production que sur les revenus des exploitants agricoles. L’objectif de cette recherche est d’étudier la vulnérabilité future des systèmes de productions agricoles face aux changements climatiques dans les Communes de Djidja et de Djougou.L’approche méthodologique utilisée comprend la collecte des données, leur traitement et l’analyse des résultats. Les enquêtes ont été faites dans les villages choisis sur la base de critères bien définis (la taille de la population agricole et son implication dans la production agricole). La méthode de D. Schwartz (1995, p. 94) a permis de constituer l’échantillon de 377 producteurs. Enfin, une projection climatique sur la période 2019-2050/2075 est faite au moyen du logiciel climatique « Climate explorer ».Il ressort des résultats de l’étude que, dans la commune de Djougou, la variation au niveau de la température minimale actuelle (RCP8.5) est comprise entre -1,62°C en 1992 et 2,29°C en 2075. La température maximale quant à elle varie entre -1,40°C en 1994 à 2,18°C en 2075. C’est à partir de 2071 que l’augmentation de la température minimale va dépasser les 2°C et si rien n’est fait cette hausse va s’accroître et devenir permanente. De même, dans la commune de Djidja, la température minimale la plus élevée est observée en 2075 avec des variations de 1 à 2°C pour les RCP4.5 et RCP8.5. Au niveau de la température maximale, l’année la moins chaude est 1992 (-1,33mm/jour) pour RCP8.5 et 1991 (-1,02mm/jour) pour RCP4.5. La même évolution s’observe au niveau des températures maximales. L’année 1992 reste la plus déficitaire avec une chute de -1,60°C et l’année la plus excédentaire sera l’année 2075 avec une hausse de 2,18 mm par jour, sur la période 1992-2080. La corrélation est observée en 2042 avec une valeur de 0,322 mm par jour. L’examen des résultats révèle que les valeurs des paramètres climatiques à savoir précipitations et évaporation sont à la hausse sur la période 1980-2080 dans la commune de Djidja. Suivant la trajectoire actuelle, RCP8.5, les années les plus arrosées sont 2037, 2070 et 2073 avec respectivement des variations égales à 0,17mm et 0,27mm de pluie par jour. Face à ces difficultés, les populations agricoles adoptent des mesures pour contrer les contraintes climatiques.ABSTRACTClimatic variability in the communes of Djidja and Djougou has consequences both on the levels of productivity and production and on the income of farmers. The objective of this research is to study the vulnerability of agricultural production systems to climate change in the Communes of Djidja and Djougou.The methodological approach used includes data collection, processing and analysis of the results. The surveys were carried out in the villages chosen on the basis of well-defined criteria (the size of the agricultural population and its involvement in agricultural production). The method of D. Schwartz (1995, p. 94) made it possible to constitute the sample of 377 producers. Finally, a climate projection over the period 2019-2050 / 2075 is made using the climate software "Climate explorer".The results of the study show that, in the municipality of Djougou, the variation in the current minimum temperature (RCP8.5) is between -1.62 ° C in 1992 and 2.29 ° C in 2075. The maximum temperature varies between -1.40 ° C in 1994 to 2.18 ° C in 2075. It is from 2071 that the increase in the minimum temperature will exceed 2 ° C and if nothing is In fact, this increase will increase and become permanent. Similarly, in the municipality of Djidja, the highest minimum temperature is observed in 2075 withvariations of 1 to 2 ° C for RCP4.5 and RCP8.5. At maximum temperature, the coolest year is 1992 (-1.33mm / day) for RCP8.5 and 1991 (-1.02mm / day) for RCP4.5. The same development can be observed at the level of maximum temperatures. The year 1992 remains the most in deficit with a fall of -1.60 ° C and the year the most in surplus will be the year 2075 with an increase of 2.18mm per day, over the period 1992-2080. The correlation is observed in 2042 with a value of 0.322 mm per day. Examination of the results reveals that the values of climatic parameters, namely precipitation and evaporation, are on the rise over the period 1980-2080 in the municipality of Djidja. Following the current trajectory, RCP8.5, the wettest years are 2037, 2070 and 2073 with respectively variations equal to 0.17mm and 0.27mm of rain per day. Faced with these difficulties, agricultural populations are adopting measures to counter climatic constraints. Keywords: Djidja, Djougou, vulnerability, production system, agriculture, climate change.


2013 ◽  
Vol 31 (1) ◽  
pp. 27 ◽  
Author(s):  
Ravind Kumar ◽  
Mark Stephens ◽  
Tony Weir

This paper analyses trends in temperature in Fiji, using data from more stations (10) and longer periods (52-78 years) than previous studies. All the stations analysed show a statistically significant trend in both maximum and minimum temperature, with increases ranging from 0.08 to 0.23°C per decade. More recent temperatures show a higher rate of increase, particularly in maximum temperature (0.18 to 0.69°C per decade from 1989 to 2008). This clear signal of climate change is consistent with that found in previous studies of temperatures in Fiji and other Pacific Islands. Trends in extreme values show an even stronger signal of climate change than that for mean temperatures. Our preliminary analysis of daily maxima at 6 stations indicates that for 4 of them (Suva, Labasa, Vunisea and Rotuma) there has been a tripling in the number of days per year with temperature >32°C between 1970 and 2008. The correlations between annual mean maximum (minimum) temperature and year are mostly strong: for about half the stations the correlation coefficient exceeds 60% over 50+ years. Trends do not vary systematically with location of station. At all 7 stations for which both trends are available there is no statistically significant difference between the trends in maximum and minimum temperatures.


Nativa ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 544-551
Author(s):  
Roberta Araújo Silva ◽  
Eduardo Silva Ries ◽  
Girlene Figueiredo Maciel

Neste trabalho foram investigadas as tendências anuais de temperatura absoluta do ar máxima e mínima de seis estações meteorológicas convencionais do Instituto Nacional de Meteorologia – INMET, localizadas no estado do Tocantins, para o período de 1961 a 2017. A análise de tendência foi realizada aplicando o teste não paramétrico de Mann-Kendall. Os resultados indicam tendência significativa de aumento da temperatura máxima anual em todas as estações. A temperatura mínima anual também apresentou tendência positiva, porém com significância estatística apenas para as estações de Porto Nacional, Palmas e Taguatinga. Embora haja diferenças nas tendências entre as estações, verificou-se um aumento sistemático da temperatura máxima e mínima, especialmente a partir da década de 90. A maior taxa de crescimento da temperatura foi registrada na estação de Palmas, de 4,14 °C para a mínima e de 3,68 °C para a máxima, em um período de 23 anos. O aumento da temperatura mínima encontrados nesse trabalho evidencia que essas cidades estão passando por um processo de maior retenção de energia na forma de calor sensível durante a noite, possivelmente devido a substituição da cobertura da superfície terrestre, devido a maior dificuldade da troca de energia entre a superfície e a atmosfera. Palavras-chave: Mann-Kendall; detecção de tendências; mudanças climáticas.   ANNUAL TEMPERATURE TRENDS IN THE STATE OF TOCANTINS ABSTRACT: In this work, the annual trends in absolute and maximum air temperature of six conventional meteorological stations of the National Institute of Meteorology - INMET, located in the state of Tocantins, for the period from 1961 to 2017 were investigated. The trend analysis was performed using the Mann-Kendall non-parametric test. The results indicate a significant trend of increasing the maximum annual temperature in all seasons. The annual minimum temperature also showed a positive trend, but with statistical significance only for the Porto Nacional, Palmas and Taguatinga stations. Although there are differences in trends between seasons, there was a systematic increase in maximum and minimum temperature, especially from the 90s. The highest rate of temperature growth was registered at Palmas station, from 4.14° C to the minimum and 3.68° C for the maximum, over a period of 23 years. The increase in the minimum temperature found in this work shows that these cities are going through a process of greater energy retention in the form of sensitive heat during the night, possibly due to the replacement of the Earth's surface coverage, due to the greater difficulty in exchanging energy between the surface and the atmosphere. Keywords: Mann-Kendall; trend detection; climate changes.


2005 ◽  
Vol 32 (23) ◽  
Author(s):  
Russell S. Vose ◽  
David R. Easterling ◽  
Byron Gleason

2002 ◽  
Vol 29 (9) ◽  
pp. 70-1-70-4 ◽  
Author(s):  
Dáithí A. Stone ◽  
Andrew J. Weaver

Understanding of temperature trends and their spatiotemporal variability has great significances on making deep insight for planners, managers, professionals and decision makers of water resources and agriculture. Therefore, this research was set with aim to analyze spatiotemporal variability of temperature and their time series trends over Bale Zone. Statistical analysis: Parametric test with regression analysis on the anomalies like deviation from mean and Non-parametric test with Mann-Kendall test together with Sen’s Slope Estimator & Zs statistics has been used for estimation of trends of a historical data series of monthly, seasonal and annually maximum and minimum temperature of selected meteorological stations in Bale Zone. Both tests relatively shows same results for monthly, seasonal and yearly temperature series. The coefficient of variation (CV) was used for variability analysis. Arc GIS 9.3 software was also used to investigate the spatial variability temperature (minimum and maximum) for the period under review. These methodology has shown a significant increasing and decreasing trends at 95% confidence level for certain time scale temperature series: temperature trends (i.e the mean maximum temperature series) showed a significant increasing trend in Robe (Annual, Spring, February, March, April, May, July, and October), Ginir (February, July, September, and December).Mean minimum temperature series showed a substantial increasing trend in Robe (May, July, September, and November) and Hunte (September). It is also observed that Mean seasonal and annually minimum temperature of the stations have shown higher variability than those mean seasonal and annual maximum temperature of the stations.


2015 ◽  
Vol 6 (2) ◽  
pp. 83-88 ◽  
Author(s):  
NM Refat Nasher ◽  
MN Uddin

Temperature is one of the pivotal climatic variables in our world climate literature. In the present study monthly, seasonal and yearly highest maximum and lowest minimum temperatures of two cities were analyzed. Mann-Kendall test and Sen’s Slope Estimator were used to determine the trend and slope magnitude. Chittagong, as the coastal city and Rajshahi, as Barind track were selected as a study area due to its respective geographical location. Such types of data of 52 years for Chittagong as well as 48 years for Rajshahi were collected from Bangladesh Meteorological Department (BMD). Monthly highest maximum and lowest minimum temperature data from 1950-2002 for Chittagong and 1964-2012 for Rajshahi were used for analysis. In Rajshahi, significant rising trends were found in highest maximum post-monsoon temperature, lowest minimum monsoon temperature and highest maximum temperature from July to October, June and August for lowest minimum temperature. Falling trends were found in annual highest maximum and lowest minimum temperatures, pre-monsoon highest maximum temperature, lowest minimum winter temperature and January lowest minimum temperature. For Chittagong, significant increasing trends found in post-monsoon highest maximum temperature, June to December highest maximum temperature except July and December lowest minimum temperature. No significant decreasing trend was found in Chittagong.DOI: http://dx.doi.org/10.3329/jesnr.v6i2.22101 J. Environ. Sci. & Natural Resources, 6(2): 83-88 2013


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Mansour Almazroui

Climate change is posing severe threats to human health through its impacts on food, water supply, and weather. Saudi Arabia has frequently experienced record-breaking climate extremes over the last decade, which have had adverse socioeconomic effects on many sectors of the country. The present study explores the changes in average temperature and temperature extremes over Saudi Arabia using an updated daily temperature dataset for the period 1978–2019. Also, changes in frequency and percentile trends of extreme events, as well as in absolute threshold-based temperature extremes, are analyzed at seasonal and annual time scales. The results are robust in showing an increase in both temperature trends and temperature extremes averaged over the second period (2000–2019) when compared to the first period (1980–1999). Over the period 1978–2019, the minimum temperature for the country increased (0.64°C per decade) at a higher rate than the maximum temperature (0.60°C per decade). The rate of increase in the minimum and maximum temperatures was reported as 0.48 and 0.71°C per decade, respectively, for the period 1978–2009. The minimum temperature increased by 0.81°C per decade for the second period compared to an increase of 0.47°C per decade for the first period. The significant increase in minimum temperature has resulted in a decreasing linear trend in the diurnal temperature range over recent decades. The maximum (minimum) temperature increased at a higher rate for Jan-Mar (Jun-Nov) with the highest increase of 0.82 (0.89)°C per decade occurring in March (August). The analysis shows a substantial increase (decrease) in the number of warm (cold) days/nights over the second period compared to the first period. The number of warm days (nights) significantly increased by about 13 (21) days per decade, and there is a significant decrease of about 11 (13) days per decade of cold days (nights). The seasonal analysis shows that this increase in warm days/nights is enhanced in boreal summer, with a reduction in the number of cold days/nights in winter. These results indicate that the warming climate of Saudi Arabia is accelerating in recent decades, which may have severe socioeconomic repercussions in many sectors of the country.


MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 163-174
Author(s):  
A. K. JASWAL

In the backdrop of recent warmer winters over India, temperature series of 174 stations well distributed over the country were statistically analyzed to document the long term variations and trends in monthly mean maximum and minimum temperatures for January to March. From the trend analysis, February month has emerged as the warmer winter month over North India where increase in both maximum (+0.29° C / decade) and minimum (+0.38° C / decade) temperatures is highest with noteworthy increase in maximum temperature at a rate 1.5 times that of the South India averaged increase. Spatially, North India minimum temperature trends for February and March and South India maximum temperature trends for all months are more coherent.   Both day-time and night-time total cloud amounts are increasing significantly over Indo-Gangetic plains and south peninsula and decreasing significantly in central and east India. However increase in temperatures over extreme south peninsula in January and March is difficult to explain on the basis of increase in day-time total cloud amount indicating strong influence of other climatic factors. At the same time, sea surface temperatures of the Arabian Sea and the Bay of Bengal are rising and there is strong positive correlation between land surface temperatures and sea surface temperatures suggesting significant contribution of warmer sea waters which may have important climatic implications over neighbouring regions.


Sign in / Sign up

Export Citation Format

Share Document