scholarly journals Vulnérabilité Future Des Systèmes De Productions Agricoles Face Aux Changements Climatiques Dans Le 4ème PDA : Cas Des Communes De Djidja Et De Djougou

Author(s):  
AWO Sourou Malikiyou ◽  
ALE Agbachi Georges ◽  
YABI Ibouraïma

La variabilité climatique dans les communes de Djidja et de Djougou engendre des conséquences aussi bien sur les niveaux de productivités, de production que sur les revenus des exploitants agricoles. L’objectif de cette recherche est d’étudier la vulnérabilité future des systèmes de productions agricoles face aux changements climatiques dans les Communes de Djidja et de Djougou.L’approche méthodologique utilisée comprend la collecte des données, leur traitement et l’analyse des résultats. Les enquêtes ont été faites dans les villages choisis sur la base de critères bien définis (la taille de la population agricole et son implication dans la production agricole). La méthode de D. Schwartz (1995, p. 94) a permis de constituer l’échantillon de 377 producteurs. Enfin, une projection climatique sur la période 2019-2050/2075 est faite au moyen du logiciel climatique « Climate explorer ».Il ressort des résultats de l’étude que, dans la commune de Djougou, la variation au niveau de la température minimale actuelle (RCP8.5) est comprise entre -1,62°C en 1992 et 2,29°C en 2075. La température maximale quant à elle varie entre -1,40°C en 1994 à 2,18°C en 2075. C’est à partir de 2071 que l’augmentation de la température minimale va dépasser les 2°C et si rien n’est fait cette hausse va s’accroître et devenir permanente. De même, dans la commune de Djidja, la température minimale la plus élevée est observée en 2075 avec des variations de 1 à 2°C pour les RCP4.5 et RCP8.5. Au niveau de la température maximale, l’année la moins chaude est 1992 (-1,33mm/jour) pour RCP8.5 et 1991 (-1,02mm/jour) pour RCP4.5. La même évolution s’observe au niveau des températures maximales. L’année 1992 reste la plus déficitaire avec une chute de -1,60°C et l’année la plus excédentaire sera l’année 2075 avec une hausse de 2,18 mm par jour, sur la période 1992-2080. La corrélation est observée en 2042 avec une valeur de 0,322 mm par jour. L’examen des résultats révèle que les valeurs des paramètres climatiques à savoir précipitations et évaporation sont à la hausse sur la période 1980-2080 dans la commune de Djidja. Suivant la trajectoire actuelle, RCP8.5, les années les plus arrosées sont 2037, 2070 et 2073 avec respectivement des variations égales à 0,17mm et 0,27mm de pluie par jour. Face à ces difficultés, les populations agricoles adoptent des mesures pour contrer les contraintes climatiques.ABSTRACTClimatic variability in the communes of Djidja and Djougou has consequences both on the levels of productivity and production and on the income of farmers. The objective of this research is to study the vulnerability of agricultural production systems to climate change in the Communes of Djidja and Djougou.The methodological approach used includes data collection, processing and analysis of the results. The surveys were carried out in the villages chosen on the basis of well-defined criteria (the size of the agricultural population and its involvement in agricultural production). The method of D. Schwartz (1995, p. 94) made it possible to constitute the sample of 377 producers. Finally, a climate projection over the period 2019-2050 / 2075 is made using the climate software "Climate explorer".The results of the study show that, in the municipality of Djougou, the variation in the current minimum temperature (RCP8.5) is between -1.62 ° C in 1992 and 2.29 ° C in 2075. The maximum temperature varies between -1.40 ° C in 1994 to 2.18 ° C in 2075. It is from 2071 that the increase in the minimum temperature will exceed 2 ° C and if nothing is In fact, this increase will increase and become permanent. Similarly, in the municipality of Djidja, the highest minimum temperature is observed in 2075 withvariations of 1 to 2 ° C for RCP4.5 and RCP8.5. At maximum temperature, the coolest year is 1992 (-1.33mm / day) for RCP8.5 and 1991 (-1.02mm / day) for RCP4.5. The same development can be observed at the level of maximum temperatures. The year 1992 remains the most in deficit with a fall of -1.60 ° C and the year the most in surplus will be the year 2075 with an increase of 2.18mm per day, over the period 1992-2080. The correlation is observed in 2042 with a value of 0.322 mm per day. Examination of the results reveals that the values of climatic parameters, namely precipitation and evaporation, are on the rise over the period 1980-2080 in the municipality of Djidja. Following the current trajectory, RCP8.5, the wettest years are 2037, 2070 and 2073 with respectively variations equal to 0.17mm and 0.27mm of rain per day. Faced with these difficulties, agricultural populations are adopting measures to counter climatic constraints. Keywords: Djidja, Djougou, vulnerability, production system, agriculture, climate change.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


2018 ◽  
Vol 50 (1) ◽  
pp. 24-42 ◽  
Author(s):  
Lei Chen ◽  
Jianxia Chang ◽  
Yimin Wang ◽  
Yuelu Zhu

Abstract An accurate grasp of the influence of precipitation and temperature changes on the variation in both the magnitude and temporal patterns of runoff is crucial to the prevention of floods and droughts. However, there is a general lack of understanding of the ways in which runoff sensitivities to precipitation and temperature changes are associated with the CMIP5 scenarios. This paper investigates the hydrological response to future climate change under CMIP5 RCP scenarios by using the Variable Infiltration Capacity (VIC) model and then quantitatively assesses runoff sensitivities to precipitation and temperature changes under different scenarios by using a set of simulations with the control variable method. The source region of the Yellow River (SRYR) is an ideal area to study this problem. The results demonstrated that the precipitation effect was the dominant element influencing runoff change (the degree of influence approaching 23%), followed by maximum temperature (approaching 12%). The weakest element was minimum temperature (approaching 3%), despite the fact that the increases in minimum temperature were higher than the increases in maximum temperature. The results also indicated that the degree of runoff sensitivity to precipitation and temperature changes was subject to changing external climatic conditions.


Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 165
Author(s):  
Prem B. Parajuli ◽  
Avay Risal

This study evaluated changes in climatic variable impacts on hydrology and water quality in Big Sunflower River Watershed (BSRW), Mississippi. Site-specific future time-series precipitation, temperature, and solar radiation data were generated using a stochastic weather generator LARS-WG model. For the generation of climate scenarios, Representative Concentration Pathways (RCPs), 4.5 and 8.5 of Global Circulation Models (GCMs): Hadley Center Global Environmental Model (HadGEM) and EC-EARTH, for three (2021–2040, 2041–2060 and 2061–2080) future climate periods. Analysis of future climate data based on six ground weather stations located within BSRW showed that the minimum temperature ranged from 11.9 °C to 15.9 °C and the maximum temperature ranged from 23.2 °C to 28.3 °C. Similarly, the average daily rainfall ranged from 3.6 mm to 4.3 mm. Analysis of changes in monthly average maximum/minimum temperature showed that January had the maximum increment and July/August had a minimum increment in monthly average temperature. Similarly, maximum increase in monthly average rainfall was observed during May and maximum decrease was observed during September. The average monthly streamflow, sediment, TN, and TP loads under different climate scenarios varied significantly. The change in average TN and TP loads due to climate change were observed to be very high compared to the change in streamflow and sediment load. The monthly average nutrient load under two different RCP scenarios varied greatly from as low as 63% to as high as 184%, compared to the current monthly nutrient load. The change in hydrology and water quality was mainly attributed to changes in surface temperature, precipitation, and stream flow. This study can be useful in the development and implementation of climate change smart management of agricultural watersheds.


2013 ◽  
Vol 31 (1) ◽  
pp. 27 ◽  
Author(s):  
Ravind Kumar ◽  
Mark Stephens ◽  
Tony Weir

This paper analyses trends in temperature in Fiji, using data from more stations (10) and longer periods (52-78 years) than previous studies. All the stations analysed show a statistically significant trend in both maximum and minimum temperature, with increases ranging from 0.08 to 0.23°C per decade. More recent temperatures show a higher rate of increase, particularly in maximum temperature (0.18 to 0.69°C per decade from 1989 to 2008). This clear signal of climate change is consistent with that found in previous studies of temperatures in Fiji and other Pacific Islands. Trends in extreme values show an even stronger signal of climate change than that for mean temperatures. Our preliminary analysis of daily maxima at 6 stations indicates that for 4 of them (Suva, Labasa, Vunisea and Rotuma) there has been a tripling in the number of days per year with temperature >32°C between 1970 and 2008. The correlations between annual mean maximum (minimum) temperature and year are mostly strong: for about half the stations the correlation coefficient exceeds 60% over 50+ years. Trends do not vary systematically with location of station. At all 7 stations for which both trends are available there is no statistically significant difference between the trends in maximum and minimum temperatures.


2012 ◽  
Vol 524-527 ◽  
pp. 3609-3612
Author(s):  
Wen Bao

Agricultural development, especially agricultural production in mountain areas, is fundamentally linked to climatic conditions, so any changes in climate will necessarily affect agricultural development. China’s agriculture faces several development challenges including those linked to climate change. Climate change is threatening food production systems and therefore the livelihoods of hundreds of millions of people who depend on agriculture in China. Agriculture is the sector most vulnerable to climate change due to its high dependence on climate and weather and because people involved in agriculture tend to be poorer compared with urban residents. Consistent warming trends and more frequent and intense meteorological disasters have been observed across China in recent decades. In line with climate change across the whole country, it will require agricultural development to implement comprehensive mitigation and adaptation strategies.


Author(s):  
Guangli Fan ◽  
Amjad Sarabandi ◽  
Mostafa Yaghoobzadeh

Abstract In this study, the trend of climate changes during a future period from 2020 to 2039 has been evaluated using the data of the Fifth Climate Change Report under two emission scenarios RCP 4.5 and RCP 8.5 for Neishabour plain, Iran. Eleven models such as CESM, EC EARTH, HADGEM, MPI, NORESM, CANESM, CSIROM, GFDLCM2, GISS E2, IPSL and MIROC ESM have been used to evaluate changes in minimum and maximum temperatures, precipitation, and evapotranspiration. The results showed that GFDLCM2, MPI and IPSL models were more accurate in terms of precipitation and GISS E2 and GFDLCM2 models were the suitable option for predicting the maximum and minimum temperatures and evapotranspiration. Considering the evaluated parameters, minimum temperature, maximum temperature and evapotranspiration had approximately the constant trends and were accompanied by a slight increase and decrease for the next two decades, but for the precipitation, large fluctuations were predicted for the next period. Moreover, in the study years for the four parameters in all simulated models, the RCP 8.5 scenario has estimated a higher amount than the RCP 4.5 scenario.


2019 ◽  
Vol 60 ◽  
pp. C109-C126 ◽  
Author(s):  
Joshua Hartigan ◽  
Shev MacNamara ◽  
Lance M Leslie

Motivated by the Millennium Drought and the current drought over much of southern and eastern Australia, this detailed statistical study compares trends in annual wet season precipitation and temperature between a coastal site (Newcastle) and an inland site (Scone). Bootstrap permutation tests reveal Scone precipitation has decreased significantly over the past 40 years (p-value=0.070) whereas Newcastle has recorded little to no change (p-value=0.800). Mean maximum and minimum temperatures for Newcastle have increased over the past 40 years (p-values of 0.002 and 0.015, respectively) while the mean maximum temperature for Scone has increased (p-value = 0.058) and the mean minimum temperature has remained stable. This suggests mean temperatures during the wet season for both locations are increasing. Considering these trends along with those for precipitation, water resources in the Hunter region will be increasingly strained as a result of increased evaporation with either similar or less precipitation falling in the region. Wavelet analysis reveals that both sites have similar power spectra for precipitation and mean maximum temperature with a statistically significant signal in the two to seven year period, typically indicative of the El-Nino Southern Oscillation climate driver. The El-Nino Southern Oscillation also drives the Newcastle mean minimum temperature, whereas the Scone power spectra has no indication of a definitive driver for mean minimum temperature. References R. A., R. L. Kitching, F. Chiew, L. Hughes, P. C. D. Newton, S. S. Schuster, A. Tait, and P. Whetton. Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment of the Intergovernmental Panel on Climate Change. Technical report, Intergovernmental Panel on Climate Change, 2014. URL https://www.ipcc.ch/report/ar5/wg2/. Bureau of Meteorology. Climate Glossary-Drought. URL http://www.bom.gov.au/climate/glossary/drought.shtml. K. M. Lau and H. Weng. Climate signal detection using wavelet transform: How to make a time series sing. B. Am. Meteorol. Soc., 76:23912402, 1995. doi:10.1175/1520-0477(1995)0762391:CSDUWT>2.0.CO;2. M. B. Richman and L. M. Leslie. Uniqueness and causes of the California drought. Procedia Comput. Sci., 61:428435, 2015. doi:10.1016/j.procs.2015.09.181. M. B. Richman and L. M. Leslie. The 20152017 Cape Town drought: Attribution and prediction using machine learning. Procedia Comput. Sci., 140:248257, 2018. doi:10.1016/j.procs.2018.10.323.


Author(s):  
Dicky Novriandi ◽  
Azriyenni Azhari Zakri ◽  
Edy Ervianto

This research will develop a catenary method to determine the sag and tension analysis on the 275 kV transmission line conductors. The catenary method is dependent on the equation of the weight of the conductor, the maximum tensile stress of the conducting wire, the length of the span, and the maximum sag of the conductor. The method will be used in determining the value of sag and tension with the design of the model using software AutoCAD. The results of research for the same tower sag height of 6.86 m, with a tension of 4610.83 kg and a conductor length of 401.06 m, while sag for the tower is not the same height of 8.14 m, with a tension of 4612.84 kg, and changes in conductor length 401.06 m. The increase in current causes the sag value to increase, when the minimum current sag value is 6.9828 m, and the maximum current sag value increases to 8.44 m. While the tension will decrease along so that temperature is increased the current minimum pressure of 4531.27kg, and at the time of maximum tension of 3749.728kg. Sag and tension are also affected by ambient temperature when the minimum temperature is 20 ℃ sags are 6.8621 m and when the maximum temperature is 40 ℃ sag increases to 7.793492 m. Tension will decrease with each increase in temperature when the minimum temperature is 20 ℃ tension 4610.538 kg when the maximum temperature is 40 ℃ the tension is reduced to 4062.345 kg.


OENO One ◽  
2021 ◽  
Vol 55 (2) ◽  
pp. 301-320
Author(s):  
Wendy Cameron ◽  
Paul R. Petrie ◽  
E.W.R. Barlow ◽  
Kate Howell ◽  
Chelsea Jarvis ◽  
...  

The variability of grapevine phenological stages under climate change has been studied in many winegrowing regions, with many reporting an advancement of the major phenological stages, particularly flowering, veraison and harvest. This study aimed to compare these regional patterns to integrate our understanding of grapevine responses. Average daily January–March (JFM) mean temperatures were correlated with day of year budburst (DBUD) and average daily springtime March–May (MAM) maximum temperatures were correlated with day of year flowering (DFLO), day of year veraison (DVER) and day of year harvest (DHAR) for 17 vineyards and showed an advancement of the associated phenological stage with increased temperature for each index. There were significant differences between vineyard groups for the rate of advancement of DBUD, DVER and DHAR which suggests that the response of phenological stage to temperature is not linear and varies between cultivars. Only the interval between DBUD and DFLO showed a significant shortening as related to MAMMax, suggesting that the advancement of grape maturity as related to increasing springtime maximum temperature is largely due to the shortening of the DBUD to DFLO interval.


Sign in / Sign up

Export Citation Format

Share Document