scholarly journals Structural changes and band gap tunability with incorporation of n-butylammonium iodide in perovskite thin film

Heliyon ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e03364
Author(s):  
Leong Wei Xian Rebecca ◽  
Zainal Arif Burhanudin ◽  
Mundzir Abdullah ◽  
Mohamed Shuaib Mohamed Saheed
2021 ◽  
Vol 868 ◽  
pp. 159253
Author(s):  
Andrea Ruiz-Perona ◽  
Galina Gurieva ◽  
Michael Sun ◽  
Tim Kodalle ◽  
Yudania Sánchez ◽  
...  

Author(s):  
Puteri Sarah Mohamad Saad ◽  
Fazlinashatul Suhaidah Zahid ◽  
Ahmad Sazali Hamzah ◽  
Mohamad Rusop Mahmood
Keyword(s):  
Band Gap ◽  

1992 ◽  
Vol 31 (Part 1, No. 2A) ◽  
pp. 295-300 ◽  
Author(s):  
Noboru Miura ◽  
Takashi Sasaki ◽  
Hironaga Matsumoto ◽  
Ryotaro Nakano

2013 ◽  
Vol 764 ◽  
pp. 266-283 ◽  
Author(s):  
Ibram Ganesh ◽  
Rekha Dom ◽  
P.H. Borse ◽  
Ibram Annapoorna ◽  
G. Padmanabham ◽  
...  

Different amounts of Fe, Co, Ni and Cu-doped TiO2 thin films were prepared on fluorine doped tin oxide (FTO) coated soda-lime glass substrates by following a conventional sol-gel dip-coating technique followed by heat treatment at 550 and 600°C for 30 min. These thin films were characterized for photo-current, chronoamperometry and band-gap energy values. The chemical compositions of metals-doped TiO2 thin films on FTO glass substrates were confirmed by XPS spectroscopic study. The metal-ions doped TiO2 thin films had a thickness of <200 nm="" optical="" transparency="" of="">80%, band-gap energy of >3.6 eV, and a direct band-to-band energy transition. The photoelectrochemical (PEC) studies revealed that all the metal-ions doped TiO2 thin films exhibit n-type semi-conducting behavior with a quite stable chronoamperometry and photo-currents that increase with the increase of applied voltage but decrease with the dopant metal-ion concentration in the thin film. Furthermore, these thin films exhibited flat-band potentials amenable to water oxidation reaction in a PEC cell. The 0.5 wt.% Cu-doped TiO2 thin film electrode exhibited an highest incident photon-to-current conversion efficiency (IPCE) of about 21%.


2001 ◽  
Vol 668 ◽  
Author(s):  
J. Fritsche ◽  
S. Gunst ◽  
A. Thiβen ◽  
R. Gegenwart ◽  
A. Klein ◽  
...  

ABSTRACTTin dioxide (SnO2) coated glass is the commonly used substrate for thin film solar cells based on CdTe absorbers. We have investigated the properties of the CdS/SnO2 interface by X-ray and ultraviolet photoelectron spectroscopy. SnO2 coated glass substrates as used for solar cell preparation were cleaned by different procedures such as derinsing, sputtering, heating and annealing in oxygen atmosphere. Different surface properties with a strongly dependent number of defects in the SnO2 band gap are identified. CdS films were deposited stepwise by thermal evaporation to determine the electronic interface properties for different surface preparation conditions. Comparative barrier heights at the CdSSnO2 contact are found for most surface pretreatments. The Fermi level position in these cases is situated in the SnO2 band gap. A different interface behaviour is determined for sputter cleaned SnO2 surfaces, which is attributed to the formation of oxygen vacancies during sputtering and subsequent formation of an interfacial SnOxSy compound.


2014 ◽  
Vol 47 (13) ◽  
pp. 135105 ◽  
Author(s):  
Se Jin Park ◽  
Yunae Cho ◽  
Sung Hwan Moon ◽  
Ji Eun Kim ◽  
Doh-Kwon Lee ◽  
...  

2018 ◽  
Vol 32 (09) ◽  
pp. 1850076 ◽  
Author(s):  
Irfan Ullah ◽  
Shaukat Ali Khattak ◽  
Tanveer Ahmad ◽  
Saman ◽  
Nayab Ali Ludhi

The titanium dioxide (TiO2) is synthesized by sol–gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.


Sign in / Sign up

Export Citation Format

Share Document