scholarly journals High concentration of extracellular nucleotides suppresses cell growth via delayed cell cycle progression in cancer and noncancer cell lines

Heliyon ◽  
2021 ◽  
pp. e08318
Author(s):  
Chika Sawa ◽  
Sachiko Yofu ◽  
Keisuke Kiriyama ◽  
Keita Sutoh ◽  
Tomomi Saito ◽  
...  
2008 ◽  
Vol 233 (11) ◽  
pp. 1433-1440 ◽  
Author(s):  
Chisato Tomoda ◽  
Farhad Moatamed ◽  
Faramarz Naeim ◽  
Jerome M. Hershman ◽  
Masahiro Sugawara

Indomethacin, a non-steroidal anti-inflammatory drug (NSAID), has been reported to inhibit the growth of medullary thyroid carcinoma (MTC) cells in vitro. However, the mechanism of inhibition of MTC cell growth by indomethacin and its potency have yet to be revealed. We examined the effect of indomethacin on three different MTC cell lines (TT cells, DRO 81–1 cells and HRO 85–1 cells) and two non-MTC cells. The mechanism of indomethacin action in MTC cells was investigated by analyzing intracellular prostaglandin level, apoptosis, and cell cycle in TT cells. Indomethacin inhibited cell growth of all three MTC cell lines but not normal thyroid cells or anaplastic thyroid carcinoma cells. Indomethacin at 10 μM or greater showed a dose response inhibition of cell growth. Indomethacin at 25 μM, a putative therapeutic serum indomethacin level, showed potency similar to 100 to 200 nM sunitinib, a receptor tyrosine kinase inhibitor. To examine whether prostaglandin depletion might determine the inhibition of MTC cell growth, we created different prostaglandin E2 (PGE2) levels in TT cells using three different NSAIDs. A profound PGE2 depletion by indomethacin-ester, a potent cyclooxygenase (COX) II inhibitor, showed the least inhibition of cell growth. Indomethacin did not increase apoptosis of TT cells. Indomethacin, but not naproxen or indomethacin-ester, reduced cell cycle progression into S phase; this was unrelated to the degree of PGE2 depletion. The expression of phosphorylated retinoblastoma (pRb) protein that shifts cells from G1 to S phase was reduced after exposure to indomethacin. In conclusion, indomethacin has specific anti-tumor effect on MTC cells, probably by reducing cell cycle progression into S phase rather than by prostaglandin depletion. Since no drug therapy is currently available for MTC, indomethacin may be one of the therapeutic candidates.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1551-1551
Author(s):  
Chuanhui Xu ◽  
Anke Van Den Berg ◽  
Arjan Diepstra ◽  
Miao Wang ◽  
Debora Jong ◽  
...  

Abstract Abstract 1551 Poster Board I-574 Introduction Hodgkin lymphoma (HL) is a B-cell neoplasm characterized by a minority of neoplastic cells, the so-called Hodgkin and Reed-Sternberg (HRS) cells, which are located within an extensive infiltrate of reactive cells. Aberrant signaling of various receptor tyrosine kinases (RTKs) via autocrine or paracrine mechanisms contributes to the survival and proliferation of HRS cells. Activation of the hepatocyte growth factor (HGF)/c-Met signaling pathway has been implicated in the pathophysiology of many cancers, but its role in HL is poorly investigated. In this study, we investigated the expression of c-Met and HGF in HL patient tissues and studied the cell physiological effects of the HGF/c-Met signaling pathway using a c-Met tyrosine kinase inhibitor SU11274 in HL cell lines. Methods The expression of c-Met and HGF in HL patient tissues was studied by immunohistochemistry on a HL tissue microarray. The c-Met expression level was determined by Western blotting, while HGF mRNA and protein levels were measured by quantitative (q)RT-PCR and ELISA in four HL cell lines, i.e. L428, KMH2, L1236 and U-HO1. The effects of SU11274 treatment on the activity of the HGF/c-Met signaling pathway was determined by detection of phosphorylated downstream targets by Western blotting. Effects on cell growth and cell cycle were determined by 3-(4,5- Dimethylthiazol -2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and by flow cytometry with Propidium iodide (PI), respectively. Results C-Met was detected in HRS cells in 55% (26/47) of HL patient tissues. Expression of HGF was detected in HRS cells in 5 c-Met positive and 2 c-Met negative HL patient tissues. C-Met was highly expressed in L428 compared to three other HL cell lines, whereas HGF was highly expressed in KMH2 and not or only weakly in the other three HL cell lines. Detectable levels of phosphorylated c-Met (p-Met) were observed only in L428 consistent with the high basal expression level of c-Met. Phosphorylation of c-Met, Akt and Erk1/2 were upregulated upon HGF stimulation of L428 cells. This activation could be blocked by inhibiting c-Met activation with SU11274. In functional studies, SU11274 suppressed cell growth in L428, promoted G2/M cell cycle arrest after 24h incubation, and induced tetraploidy after 48h. Washing of the cells after induction of G2/M arrest resulted in normal cell cycle progression indicating that the G2/M cell cycle arrest was reversible. Inhibition of PI3K, MEK1/2 and Erk1/2, three downstream targets of the HGF/c-Met signaling pathway, also induced G2/M cell cycle arrest in L428, indicating that these factors are involved in the G2/M cell cycle arrest induced by SU11274. Conclusion Co-expression of c-Met and HGF in HRS cells was observed in 11% of the HL patient tissues and HGF/c-Met signaling pathway regulates cell growth and cell cycle progression in L428 cells. Disclosures No relevant conflicts of interest to declare.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinhong Qi ◽  
Li Zhou ◽  
Dongqing Li ◽  
Jingyuan Yang ◽  
He Wang ◽  
...  

Abstract Background Cell division cycle 25A (CDC25A) is a well-recognized regulator of cell cycle progression and is involved in cancer development. This work focused on the function of CDC25A in cervical cancer cell growth and the molecules involved. Methods A GEO dataset GSE63514 comprising data of cervical squamous cell carcinoma (CSCC) tissues was used to screen the aberrantly expressed genes in cervical cancer. The CDC25A expression in cancer and normal tissues was predicted in the GEPIA database and that in CSCC and normal cells was determined by RT-qPCR and western blot assays. Downregulation of CDC25A was introduced in CSCC cells to explore its function in cell growth and the cell cycle progression. The potential regulators of CDC25A activity and the possible involved signaling were explored. Results CDC25A was predicted to be overexpressed in CSCC, and high expression of CDC25A was observed in CSCC cells. Downregulation of CDC25A in ME180 and C33A cells reduced cell proliferation and blocked cell cycle progression, and it increased cell apoptosis. ALX3 was a positive regulator of CDC25A through transcription promotion. It recruited a histone demethylase, lysine demethylase 2B (KDM2B), to the CDC25A promoter, which enhanced CDC25A expression through demethylation of H3k4me3. Overexpression of ALX3 in cells blocked the inhibitory effects of CDC25A silencing. CDC25A was found as a positive regulator of the PI3K/Akt signaling pathway. Conclusion This study suggested that the ALX3 increased CDC25A expression through KDM2B-mediated demethylation of H3K4me3, which induced proliferation and cell cycle progression of cervical cancer cells.


Oncogene ◽  
2000 ◽  
Vol 19 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Torsten E Reichert ◽  
Shigeki Nagashima ◽  
Yoshiro Kashii ◽  
Joanna Stanson ◽  
Gui Gao ◽  
...  

2007 ◽  
Vol 4 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Masaki Kawamura ◽  
Hirotake Kasai

We examined the effects of hemicellulase-treatedAgaricus blazei(AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth.


1987 ◽  
Vol 7 (10) ◽  
pp. 3846-3852 ◽  
Author(s):  
T Nakajima ◽  
M Masuda-Murata ◽  
E Hara ◽  
K Oda

Rat 3Y1 cell lines that express either adenovirus type 12 E1A 13S mRNA or 12S mRNA in response to dexamethasone treatment were established by introduction of recombinant vector DNA containing the E1A 13S- or 12S-mRNA cDNA placed downstream of the hormone-inducible promoter of mouse mammary tumor virus. These cell lines were growth arrested, and the induction of cell cycle progression was analyzed by flow cytometry after switch on of the cDNA by the addition of dexamethasone. The results indicate that the 13S- or 12S-mRNA product alone has the ability to cause progression of the cell cycle at a similar rate. The simultaneous addition of epidermal growth factor accelerated the rate of cell cycle progression in the transition from the G0/G1 phase to the S phase.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5203 ◽  
Author(s):  
Mohammad Faujul Kabir ◽  
Johari Mohd Ali ◽  
Onn Haji Hashim

BackgroundWe have previously reported anticancer activities ofMelicope ptelefolia(MP) leaf extracts on four different cancer cell lines. However, the underlying mechanisms of actions have yet to be deciphered. In the present study, the anticancer activity of MP hexane extract (MP-HX) on colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines was characterized through microarray gene expression profiling.MethodsHCT116 and HepG2 cells were treated with MP-HX for 24 hr. Total RNA was extracted from the cells and used for transcriptome profiling using Applied Biosystem GeneChip™ Human Gene 2.0 ST Array. Gene expression data was analysed using an Applied Biosystems Expression Console and Transcriptome Analysis Console software. Pathway enrichment analyses was performed using Ingenuity Pathway Analysis (IPA) software. The microarray data was validated by profiling the expression of 17 genes through quantitative reverse transcription PCR (RT-qPCR).ResultsMP-HX induced differential expression of 1,290 and 1,325 genes in HCT116 and HepG2 cells, respectively (microarray data fold change, MA_FC ≥ ±2.0). The direction of gene expression change for the 17 genes assayed through RT-qPCR agree with the microarray data. In both cell lines, MP-HX modulated the expression of many genes in directions that support antiproliferative activity. IPA software analyses revealed MP-HX modulated canonical pathways, networks and biological processes that are associated with cell cycle, DNA replication, cellular growth and cell proliferation. In both cell lines, upregulation of genes which promote apoptosis, cell cycle arrest and growth inhibition were observed, while genes that are typically overexpressed in diverse human cancers or those that promoted cell cycle progression, DNA replication and cellular proliferation were downregulated. Some of the genes upregulated by MP-HX include pro-apoptotic genes (DDIT3, BBC3, JUN), cell cycle arresting (CDKN1A, CDKN2B), growth arrest/repair (TP53, GADD45A) and metastasis suppression (NDRG1). MP-HX downregulated the expression of genes that could promote anti-apoptotic effect, cell cycle progression, tumor development and progression, which include BIRC5, CCNA2, CCNB1, CCNB2, CCNE2, CDK1/2/6, GINS2, HELLS, MCM2/10 PLK1, RRM2 and SKP2. It is interesting to note that all six top-ranked genes proposed to be cancer-associated (PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2) were downregulated by MP-HX in both cell lines.DiscussionThe present study showed that the anticancer activities of MP-HX are exerted through its actions on genes regulating apoptosis, cell proliferation, DNA replication and cell cycle progression. These findings further project the potential use of MP as a nutraceutical agent for cancer therapeutics.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3946-3946
Author(s):  
Liping Li ◽  
Katharina Hayer ◽  
Lingling Xian ◽  
Li Luo ◽  
Leslie Cope ◽  
...  

Introduction: Acute B-cell lymphoblastic leukemia (B-ALL) is the most common form of childhood leukemia and the leading cause of death in children with cancer. While therapy is often curative, about 10-15% of children will relapse with recurrent disease and abysmal outcomes. Actionable mechanisms that mediate relapse remain largely unknown. The gene encoding the High Mobility Group A1(HMGA1) chromatin regulator is overexpressed in diverse malignancies where high levels portend poor outcomes. In murine models, we discovered thatHmga1 overexpression is sufficient for clonal expansion and progression to aggressive acute lymphoid leukemia (Cancer Res 2008,68:10121, 2018,78:1890; Nature Comm 2017,8:15008). Further, HMGA1 is overexpressed in pediatric B-ALL (pB-ALL) blasts with highest levels in children who relapse early compared to those who achieve chronic remissions. Together, these findings suggest that HMGA1 is required for leukemogenesis and may foster relapse in B-ALL. We therefore sought to: 1) test the hypothesis that HMGA1 is a key epigenetic regulator required for leukemogenesis and relapse in pB-ALL, and, 2) elucidate targetable mechanisms mediated by HMGA1 in leukemogenesis. Methods: We silenced HMGA1 via lentiviral delivery of short hairpin RNAs targeting 2 different sequences in cell lines derived from relapsed pB-ALL (REH, 697). REH cells harbor the TEL-AML1 fusion; 697 cells express BCL2, BCL3, and cMYC. Next, we assessed leukemogenic phenotypes in vitro (proliferation, cell cycle progression, apoptosis, and clonogenicity) and leukemogenesis invivo. To dissect molecular mechanisms underlying HMGA1, we performed RNA-Seq and applied in silico pathway analysis. Results: There is abundant HMGA1 mRNA and protein in both pB-ALL cell lines and HMGA1 was effectively silenced by short hairpin RNA. Further, silencing HMGA1 dramatically halts proliferation in both cell lines, leading to a decrease in cells in S phase with a concurrent increase in G0/S1. Apoptosis also increased by 5-10% after HMGA1 silencing based on flow cytometry for Annexin V. In colony forming assays, silencing HMGA1 impaired clonogenicity in both pB-ALL cell lines. To assess HMGA1 function in leukemogenesis in vivo, we implanted control pB-ALL cells (transduced with control lentivirus) or those with HMGA1 silencing via tail vein injection into immunosuppressed mice (NOD/SCID/IL2 receptor γ). All mice receiving control REH cells succumbed to leukemia with a median survival of only 29 days. At the time of death, mice had marked splenomegaly along with leukemic cells circulating in the peripheral blood and infiltrating both the spleen and bone marrow. In contrast, mice injected with REH cells with HMGA1 silencing survived for >40 days (P<0.001) and had a significant decrease in tumor burden in the peripheral blood, spleen, and bone marrow. Similar results were obtained with 697 cells, although this model was more fulminant with control mice surviving for a median of only 17 days. To determine whether the leukemic blasts found in mice injected with ALL cells after HMGA1 silencing represented a clone that expanded because it escaped HMGA1 silencing, we assessed HMGA1 levels and found that cells capable of establishing leukemia had high HMGA1 expression, with levels similar to those observed in control cells without HMGA1 silencing. RNA-Seq analyses from REH and 697 cell lines with and without HMGA1 silencing revealed that HMGA1 up-regulates transcriptional networks involved in RAS/MAPK/ERK signaling while repressing the IDH1 metabolic gene, the latter of which functions in DNA and histone methylation. Studies are currently underway to identify effective agents to target HMGA1 pathways. Conclusions: Silencing HMGA1 dramatically disrupts leukemogenic phenotypes in vitro and prevents the development of leukemia in mice. Mechanistically, RNA-Seq analyses revealed that HMGA amplifies transcriptional networks involved cell cycle progression and epigenetic modifications. Our findings highlight the critical role for HMGA1 as a molecular switch required for leukemic transformation in pB-ALL and a rational therapeutic target that may be particularly relevant for relapsed B-ALL. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Larissa Kido ◽  
Eun-Ryeong Hahm ◽  
Valeria Cagnon ◽  
Mário Maróstica ◽  
Shivendra Singh

Abstract Objectives Piceatannol (PIC) is a polyphenolic and resveratrol analog that is found in many vegetables consumed by humans. Like resveratrol, PIC has beneficial effects on health due to its anti-inflammatory, anti-oxidative and anti-proliferative features. However, the molecular targets of PIC in prostate cancer (PCa), which is the second most common cancer in men worldwide, are still poorly understood. Preventing cancer through dietary sources is a promising strategy to control diseases. Therefore, the aim of present study was to investigate the molecular mechanistic of actions of PIC in PCa cell lines with different genetic background common to human prostate cancer. Methods Human PCa cell lines (PC-3, 22Rv1, LNCaP, and VCaP) were treated with different doses of PIC (5–40 µM) and used for cell viability assay, measurement of total free fatty acids (FFA) and lactate, and cell cycle distribution. Results PIC treatment dose- and time-dependently reduced viability in PC-3 (androgen-independent, PTEN null, p53 null) and VCaP cells (androgen-responsive, wild-type PTEN, mutant p53). Because metabolic alterations, such as increased glucose and lipid metabolism are implicated in pathogenesis of in PCa, we tested if PIC could affect these pathways. Results from lactate and total free fatty acid assays in VCaP, 22Rv1 (castration-resistant, wild-type PTEN, mutant p53), and LNCaP (androgen-responsive, PTEN null, wild-type p53) revealed no effect of PIC on these metabolisms. However, PIC treatment delayed cell cycle progression in G0/G1 phase concomitant with the induction of apoptosis in both LNCaP and 22Rv1 cells, suggesting that growth inhibitory effect of PIC in PCa is associated with cell cycle arrest and apoptotic cell death at least LNCaP and 22Rv1 cells. Conclusions While PIC treatment does not alter lipid or glucose metabolism, cell cycle arrest and apoptosis induction are likely important in anti-cancer effects of PIC. Funding Sources São Paulo Research Foundation (2018/09793-7).


Sign in / Sign up

Export Citation Format

Share Document