scholarly journals Measurements of sound-speed and density contrasts of zooplankton in Antarctic waters

2005 ◽  
Vol 62 (4) ◽  
pp. 818-831 ◽  
Author(s):  
D. Chu ◽  
P.H. Wiebe

Abstract Sound-speed and density contrasts (h and g, respectively), two important acoustic material properties, of live zooplankton were measured off the western Antarctic Peninsula during a Southern Ocean GLOBEC cruise conducted from 9 April to 21 May 2002. The work included in situ sound-speed contrast and shipboard density-contrast measurements. The temperature and pressure (depth) dependence of the sound-speed contrast of Euphausia superba and E. crystallorophias as well as that of some other zooplankton species were investigated. The size range of E. superba used in the measurements varied from about 20 mm to 57 mm, with mean length of 36.7 mm and standard deviation of 9.8 mm, which covered life stages from juvenile to adult. For E. superba, there was no statistically significant depth dependence, but there was a moderate dependence of sound-speed and density contrasts on the size of the animals. The measured sound-speed contrast varied between 1.018 and 1.044, with mean value 1.0279 and standard deviation 0.0084, while the measured density contrast varied between 1.007 and 1.036, with mean value 1.0241 and standard deviation 0.0082. For E. crystallorophias and Calanus there was a measurable depth dependence in sound-speed contrast. The in situ sound-speed contrasts for E. crystallorophias were 1.025 ± 0.004 to 1.029 ± 0.009. For Calanus, they were variable, with one set giving a value of 0.949 ± 0.001 and the other giving 1.013 ± 0.002. Shipboard measurements of other taxa/species also showed substantial variation in g and h. In general, values of g ranged from 0.9402 to 1.051 and h ranged from 0.949 to 1.096. The variation of the material properties is related to species, type, size, stage, and in some cases depth of occurrence. The uncertainty of the estimates of zooplankton biomass attributable to these variations in g and h can be quite large (more than 100 fold). Improvements in making biological inferences from acoustic data depend strongly on increased information about the material properties of zooplankton and the biological causes for their variation, as well as a knowledge of the species composition and abundance.

2014 ◽  
Vol 71 (9) ◽  
pp. 2550-2563 ◽  
Author(s):  
Kaylyn N. Becker ◽  
Joseph D. Warren

Abstract We measured the density and sound speed contrasts relative to seawater of Northeast Pacific zooplankton. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation (s.d.) for euphausiid density contrast were 1.059 ± 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area ∼4–10 d apart were significantly higher (p< 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and s.d. for euphausiid sound speed were 1.019 ± 0.009. Euphausiid mass was calculated from measured density and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid volume could be accurately estimated from two-dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Data from this study can improve the accuracy of theoretical acoustic scattering models for these taxa, resulting in more accurate estimates of zooplankton biomass in this region.


1992 ◽  
Vol 114 (3) ◽  
pp. 409-414
Author(s):  
J. H. Ginsberg

When expressed in the form of characteristic differential equations, the laws governing propagation of linear one-dimensional waves through heterogeneous media show that the only properties of significance are the sound speed c and the acoustic impedance ρc, either of which may vary spatially. The former occurs in the differential equations governing the (curved) characteristics, while the latter appears in the differential equations governing the evolution of particle velocity and stress along the characteristics. The present study employs an inherently stable finite difference representation of the characteristic equations, in which the spatial grid is obtained by evaluating the intersections in space-time of constant time lines with comparable increments of the characteristic variables. The numerical procedure is used to follow the propagation of a single-lobe sine pulse in cases where only ρ or c fluctuates spatially about a mean value while the other property is constant, and compares those results to the case were both material properties vary. Nonconstancy of c is shown to cause temporal shifts in waveforms, while spatial variation of ρc causes attenuation and distortion of the waveform.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2421
Author(s):  
Roberta Fusco ◽  
Vincenza Granata ◽  
Mauro Mattace Raso ◽  
Paolo Vallone ◽  
Alessandro Pasquale De Rosa ◽  
...  

Purpose. To combine blood oxygenation level dependent magnetic resonance imaging (BOLD-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted MRI (DW-MRI) in differentiation of benign and malignant breast lesions. Methods. Thirty-seven breast lesions (11 benign and 21 malignant lesions) pathologically proven were included in this retrospective preliminary study. Pharmaco-kinetic parameters including Ktrans, kep, ve, and vp were extracted by DCE-MRI; BOLD parameters were estimated by basal signal S0 and the relaxation rate R2*; and diffusion and perfusion parameters were derived by DW-MRI (pseudo-diffusion coefficient (Dp), perfusion fraction (fp), and tissue diffusivity (Dt)). The correlation coefficient, Wilcoxon-Mann-Whitney U-test, and receiver operating characteristic (ROC) analysis were calculated and area under the ROC curve (AUC) was obtained. Moreover, pattern recognition approaches (linear discrimination analysis and decision tree) with balancing technique and leave one out cross validation approach were considered. Results. R2* and D had a significant negative correlation (−0.57). The mean value, standard deviation, Skewness and Kurtosis values of R2* did not show a statistical significance between benign and malignant lesions (p > 0.05) confirmed by the ‘poor’ diagnostic value of ROC analysis. For DW-MRI derived parameters, the univariate analysis, standard deviation of D, Skewness and Kurtosis values of D* had a significant result to discriminate benign and malignant lesions and the best result at the univariate analysis in the discrimination of benign and malignant lesions was obtained by the Skewness of D* with an AUC of 82.9% (p-value = 0.02). Significant results for the mean value of Ktrans, mean value, standard deviation value and Skewness of kep, mean value, Skewness and Kurtosis of ve were obtained and the best AUC among DCE-MRI extracted parameters was reached by the mean value of kep and was equal to 80.0%. The best diagnostic performance in the discrimination of benign and malignant lesions was obtained at the multivariate analysis considering the DCE-MRI parameters alone with an AUC = 0.91 when the balancing technique was considered. Conclusions. Our results suggest that the combined use of DCE-MRI, DW-MRI and/or BOLD-MRI does not provide a dramatic improvement compared to the use of DCE-MRI features alone, in the classification of breast lesions. However, an interesting result was the negative correlation between R2* and D.


2021 ◽  
pp. 1-13
Author(s):  
Anna Belcher ◽  
Sophie Fielding ◽  
Andrew Gray ◽  
Lauren Biermann ◽  
Gabriele Stowasser ◽  
...  

Abstract Antarctic krill are the dominant metazoan in the Southern Ocean in terms of biomass; however, their wide and patchy distribution means that estimates of their biomass are still uncertain. Most currently employed methods do not sample the upper surface layers, yet historical records indicate that large surface swarms can change the water colour. Ocean colour satellites are able to measure the surface ocean synoptically and should theoretically provide a means for detecting and measuring surface krill swarms. Before we can assess the feasibility of remote detection, more must be known about the reflectance spectra of krill. Here, we measure the reflectance spectral signature of Antarctic krill collected in situ from the Scotia Sea and compare it to that of in situ water. Using a spectroradiometer, we measure a strong absorption feature between 500 and 550 nm, which corresponds to the pigment astaxanthin, and high reflectance in the 600–700 nm range due to the krill's red colouration. We find that the spectra of seawater containing krill is significantly different from seawater only. We conclude that it is tractable to detect high-density swarms of krill remotely using platforms such as optical satellites and unmanned aerial vehicles, and further steps to carry out ground-truthing campaigns are now warranted.


Author(s):  
Athanasios N. Papadimopoulos ◽  
Stamatios A. Amanatiadis ◽  
Nikolaos V. Kantartzis ◽  
Theodoros T. Zygiridis ◽  
Theodoros D. Tsiboukis

Purpose Important statistical variations are likely to appear in the propagation of surface plasmon polariton waves atop the surface of graphene sheets, degrading the expected performance of real-life THz applications. This paper aims to introduce an efficient numerical algorithm that is able to accurately and rapidly predict the influence of material-based uncertainties for diverse graphene configurations. Design/methodology/approach Initially, the surface conductivity of graphene is described at the far infrared spectrum and the uncertainties of its main parameters, namely, the chemical potential and the relaxation time, on the propagation properties of the surface waves are investigated, unveiling a considerable impact. Furthermore, the demanding two-dimensional material is numerically modeled as a surface boundary through a frequency-dependent finite-difference time-domain scheme, while a robust stochastic realization is accordingly developed. Findings The mean value and standard deviation of the propagating surface waves are extracted through a single-pass simulation in contrast to the laborious Monte Carlo technique, proving the accomplished high efficiency. Moreover, numerical results, including graphene’s surface current density and electric field distribution, indicate the notable precision, stability and convergence of the new graphene-based stochastic time-domain method in terms of the mean value and the order of magnitude of the standard deviation. Originality/value The combined uncertainties of the main parameters in graphene layers are modeled through a high-performance stochastic numerical algorithm, based on the finite-difference time-domain method. The significant accuracy of the numerical results, compared to the cumbersome Monte Carlo analysis, renders the featured technique a flexible computational tool that is able to enhance the design of graphene THz devices due to the uncertainty prediction.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2350
Author(s):  
Jia Liu ◽  
Guiyun Tian ◽  
Bin Gao ◽  
Kun Zeng ◽  
Yongbing Xu ◽  
...  

Stress is the crucial factor of ferromagnetic material failure origin. However, the nondestructive test methods to analyze the ferromagnetic material properties’ inhomogeneity on the microscopic scale with stress have not been obtained so far. In this study, magnetic Barkhausen noise (MBN) signals on different silicon steel sheet locations under in situ tensile tests were detected by a high-spatial-resolution magnetic probe. The domain-wall (DW) motion, grain, and grain boundary were detected using a magneto-optical Kerr (MOKE) image. The time characteristic of DW motion and MBN signals on different locations was varied during elastic deformation. Therefore, a time-response histogram is proposed in this work to show different DW motions inside the grain and around the grain boundary under low tensile stress. In order to separate the variation of magnetic properties affected by the grain and grain boundary under low tensile stress corresponding to MBN excitation, time-division was carried out to extract the root-mean-square (RMS), mean, and peak in the optimized time interval. The time-response histogram of MBN evaluated the silicon steel sheet’s inhomogeneous material properties, and provided a theoretical and experimental reference for ferromagnetic material properties under stress.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kylie Owen ◽  
Kentaro Saeki ◽  
Joseph D. Warren ◽  
Alessandro Bocconcelli ◽  
David N. Wiley ◽  
...  

AbstractFinding prey is essential to survival, with marine predators hypothesised to track chemicals such as dimethyl sulfide (DMS) while foraging. Many predators are attracted to artificially released DMS, and laboratory experiments have shown that zooplankton grazing on phytoplankton accelerates DMS release. However, whether natural DMS concentrations are useful for predators and correlated to areas of high prey biomass remains a fundamental knowledge gap. Here, we used concurrent hydroacoustic surveys and in situ DMS measurements to present evidence that zooplankton biomass is spatially correlated to natural DMS concentration in air and seawater. Using agent simulations, we also show that following gradients of DMS would lead zooplankton predators to areas of higher prey biomass than swimming randomly. Further understanding of the conditions and scales over which these gradients occur, and how they are used by predators, is essential to predicting the impact of future changes in the ocean on predator foraging success.


2018 ◽  
Vol 189 ◽  
pp. 04009
Author(s):  
Kun Liu ◽  
Shiping Wang ◽  
Linyuan He ◽  
Duyan Bi ◽  
Shan Gao

Aiming at the color distortion of the restored image in the sky region, we propose an image dehazing algorithm based on double priors constraint. Firstly, we divided the haze image into sky and non-sky regions. Then the Color-lines prior and dark channel prior are used for estimating the transmission of sky and non-sky regions respectively. After introducing color-lines prior to correct sky regions restored by the dark channel prior, we get an accurate transmission. Finally, the local media mean value and standard deviation are used to refine the transmission to obtain the dehazing image. Experimental results show that the algorithm has obvious advantages in the recovery of the sky area.


2021 ◽  
Vol 13 (9) ◽  
pp. 1846
Author(s):  
Vivek Kumar ◽  
Isabel M. Morris ◽  
Santiago A. Lopez ◽  
Branko Glisic

Estimating variations in material properties over space and time is essential for the purposes of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure. Properties such as compressive strength evolve over time and are reflective of the overall condition of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent spatial variability of material properties over large length scales. In recent years, nondestructive approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ material properties of concrete with a focus on the compressive strength. However, these methods require personnel expertise, careful data collection, and high investment. This paper presents a novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material properties over time and space for assessment of concrete bridges. The results show that attributes (or features) of the GPR data such as raw average amplitudes can be used to identify differences in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous amplitudes and intensity of reflected waves are useful in predicting the material properties such as compressive strength, porosity, and density. For compressive strength, one alternative approach of the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated values. The results show that GPR attributes could be successfully used for identifying spatial and temporal variation of concrete properties. Finally, discussions are presented regarding their suitability and limitations for field applications.


2014 ◽  
Vol 496-500 ◽  
pp. 1643-1647
Author(s):  
Ying Feng Wu ◽  
Gang Yan Li

IR-based large scale volume localization system (LSVLS) can localize the mobile robot working in large volume, which is constituted referring to the MSCMS-II. Hundreds cameras in LSVLS must be connected to the control station (PC) through network. Synchronization of cameras which are mounted on different control stations is significant, because the image acquisition of the target must be synchronous to ensure that the target is localized precisely. Software synchronization method is adopted to ensure the synchronization of camera. The mean value of standard deviation of eight cameras mounted on two workstations is 12.53ms, the localization performance of LSVLS is enhanced.


Sign in / Sign up

Export Citation Format

Share Document