Synchronized spike selection in a hippocampal dentate gyrus network model in the theta frequency range

2007 ◽  
Vol 1301 ◽  
pp. 79-82 ◽  
Author(s):  
Katsumi Tateno ◽  
Hatsuo Hayashi ◽  
Satoru Ishizuka
2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrés Canales-Johnson ◽  
Renzo C. Lanfranco ◽  
Juan Pablo Morales ◽  
David Martínez-Pernía ◽  
Joaquín Valdés ◽  
...  

AbstractMental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of “seeing with the mind’s eye”. In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery. However, the neural connectivity between these regions during visual imagery of socially relevant stimuli has not been studied. Here we used electroencephalography to investigate neural connectivity and its dynamics between frontal, parietal, occipital and temporal electrodes during visual imagery of faces. We found that voluntary visual imagery of faces is associated with long-range phase synchronisation in the gamma frequency range between frontoparietal electrode pairs and between occipitoparietal electrode pairs. In contrast, no effect of imagery was observed in the connectivity between occipitotemporal electrode pairs. Gamma range synchronisation between occipitoparietal electrode pairs predicted subjective ratings of the contour definition of imagined faces. Furthermore, we found that visual imagery of faces is associated with an increase of short-range frontal synchronisation in the theta frequency range, which temporally preceded the long-range increase in the gamma synchronisation. We speculate that the local frontal synchrony in the theta frequency range might be associated with an effortful top-down mnemonic reactivation of faces. In contrast, the long-range connectivity in the gamma frequency range along the fronto-parieto-occipital axis might be related to the endogenous binding and subjective clarity of facial visual features.


2008 ◽  
Vol 86 (5) ◽  
pp. 249-256 ◽  
Author(s):  
Takashi Kubota ◽  
Itsuki Jibiki ◽  
Akira Ishikawa ◽  
Tomomi Kawamura ◽  
Sonoko Kurokawa ◽  
...  

We previously found that 20 mg/kg clozapine i.p. potentiated the excitatory synaptic responses elicited in the dentate gyrus by single electrical stimulation of the perforant path in chronically prepared rabbits. We called this phenomenon clozapine-induced potentiation and proved that it was an NMDA receptor-mediated event. This potentiation is presumably related to clozapine’s clinical effect on negative symptoms and cognitive dysfunctions in schizophrenia. In the present study, to investigate the mechanisms underlying clozapine-induced potentiation, we examined whether extracellular dopamine and 5-HT levels changed during the potentiation by using a microdialysis technique in the dentate gyrus. The extracellular concentrations of dopamine and 5-HT levels were measured every 5 min during all experiments. Extracellular 5-HT levels did not change, but dopamine levels eventually increased significantly during clozapine-induced potentiation. The increase in the dopamine levels occurred almost simultaneously with the induction of clozapine-induced potentiation. These results suggest that clozapine-induced potentiation is at least partly attributable to a dopamine-mediated potentiation of excitatory synaptic transmission. The present study implies that such phenomena occur also in the perforant path–dentate gyrus pathway.


2009 ◽  
Vol 111 (6) ◽  
pp. 1237-1247 ◽  
Author(s):  
László Seress ◽  
Hajnalka Ábrahám ◽  
Zsolt Horváth ◽  
Tamás Dóczi ◽  
József Janszky ◽  
...  

Object Hippocampal sclerosis can be identified in most patients with mesial temporal lobe epilepsy (TLE). Surgical removal of the sclerotic hippocampus is widely performed to treat patients with drug-resistant mesial TLE. In general, both epilepsy-prone and epilepsy-resistant neurons are believed to be in the hippocampal formation. The hilar mossy cells of the hippocampal dentate gyrus are usually considered one of the most vulnerable types of neurons. The aim of this study was to clarify the fate of mossy cells in the hippocampus in epileptic humans. Methods Of the 19 patients included in this study, 15 underwent temporal lobe resection because of drug-resistant TLE. Four patients were used as controls because they harbored tumors that had not invaded the hippocampus and they had experienced no seizures. Histological evaluation of resected hippocampal tissues was performed using immunohistochemistry. Results Mossy cells were identified in the control as well as the epileptic hippocampi by using cocaine- and amphetamine-regulated transcript peptide immunohistochemistry. In most cases the number of mossy cells was reduced and thorny excrescences were smaller in the epileptic hippocampi than in controls; however, there was a significant loss of pyramidal cells and a partial loss of granule cells in the same epileptic hippocampi in which mossy cell loss was apparent. The loss of mossy cells could be correlated with the extent of hippocampal sclerosis, patient age at seizure onset, duration of epilepsy, and frequency of seizures. Conclusions In many cases large numbers of mossy cells were present in the hilus of the dentate gyrus when most pyramidal neurons of the CA1 and CA3 areas of the Ammon's horn were lost, suggesting that mossy cells may not be more vulnerable to epileptic seizures than the hippocampal pyramidal neurons.


2021 ◽  
Vol 101 ◽  
pp. 160-171
Author(s):  
Shayan Aliakbari ◽  
Mohammad Sayyah ◽  
Hadi Mirzapourdelavar ◽  
Niloufar Amini ◽  
Naser Naghdi ◽  
...  

2016 ◽  
Vol 36 (22) ◽  
pp. 6050-6068 ◽  
Author(s):  
Hirofumi Noguchi ◽  
Naoya Murao ◽  
Ayaka Kimura ◽  
Taito Matsuda ◽  
Masakazu Namihira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document