The impact of high pressure on glucosinolate profile and myrosinase activity in seedlings from Brussels sprouts

2016 ◽  
Vol 38 ◽  
pp. 342-348 ◽  
Author(s):  
Jia Wang ◽  
Francisco J. Barba ◽  
Heidi B. Frandsen ◽  
Susanne Sørensen ◽  
Karsten Olsen ◽  
...  
2019 ◽  
Vol 58 ◽  
pp. 102208
Author(s):  
Jia Wang ◽  
Francisco J. Barba ◽  
Jens C. Sørensen ◽  
Heidi B. Frandsen ◽  
Susanne Sørensen ◽  
...  

2018 ◽  
Vol 245 ◽  
pp. 1212-1217 ◽  
Author(s):  
Jia Wang ◽  
Francisco J. Barba ◽  
Jens C. Sørensen ◽  
Heidi B. Frandsen ◽  
Susanne Sørensen ◽  
...  

2014 ◽  
Vol 248 ◽  
pp. 107-121 ◽  
Author(s):  
Jan Henrik Finke ◽  
Svea Niemann ◽  
Claudia Richter ◽  
Thomas Gothsch ◽  
Arno Kwade ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


2015 ◽  
Vol 18 (6) ◽  
pp. 539-559 ◽  
Author(s):  
Mattie Toma

Choking under pressure represents a phenomenon in which individuals faced with a high-pressure situation do not perform as well as would be expected were they performing under normal conditions. In this article, I identify determinants that predict a basketball player’s susceptibility to choking under pressure. Identification of these determinants adds to our understanding of players’ psychology at pivotal points in the game. My analysis draws on play-by-play data from ESPN.com that feature over 2 million free-throw attempts in women’s and men’s college and professional basketball games from the 2002-2013 seasons. Using regression analysis, I explore the impact of both gender and level of professionalism on performance in high-pressure situations. I find that in the final 30 seconds of a tight game, Women’s National Basketball Association and National Basketball Association players are 5.81 and 3.11 percentage points, respectively, less likely to make a free throw, while female and male college players are 2.25 and 2.09 percentage points, respectively, less likely to make a free throw, though statistical significance cannot be established among National Collegiate Athletic Association women. The discrepancy in choking between college and professional players is pronounced when comparing male college players who do and do not make it to the professional level; the free-throw performance of those destined to go pro falls 6 percentage points more in high-pressure situations. Finally, I find that women and men do not differ significantly in their propensity to choke.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Kozawa ◽  
Kayo Fukuyama ◽  
Kizuku Kushimoto ◽  
Shingo Ishihara ◽  
Junya Kano ◽  
...  

AbstractMechanochemical reactions can be induced in a solution by the collision of balls to produce high-temperature and high-pressure zones, with the reactions occurring through a dissolution–precipitation mechanism due to a change in solubility. However, only a fraction of the impact energy contributes to the mechanochemical reactions, while the rest is mainly consumed by the wear of balls and the heat generation. To clarify whether the normal or tangential component of collisions makes a larger contribution on the reaction, herein we studied the effect of collision direction on a wet mechanochemical reaction through combined analysis of the experimental reaction rates and simulated ball motion. Collisions of balls in the normal direction were found to contribute strongly to the wet mechanochemical reaction. These results could be used to improve the synthesis efficiency, predict the reaction, and lower the wear in the wet mechanochemical reactions.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3569
Author(s):  
Yicheng Tan ◽  
Zhang Ye ◽  
Mansheng Wang ◽  
Muhammad Faisal Manzoor ◽  
Rana Muhammad Aadil ◽  
...  

In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells.


2021 ◽  
Author(s):  
David Akinpelu ◽  
Ingmar Schoegl

Abstract Within the area of combustion, externally heated microtubes have been introduced to study the combustion characteristics of fuels and fuel blends. Microreactors have advantages over other conventional fuel testing methods because of their potential to test small volumes (< 20 μl) at high throughput. In this work, a high-pressure microreactor is designed and implemented to test fuels up to a pressure of 20 bar where automated testing reduces test time substantially. The novelty of this device is its capability to operate at pressure exceeding the current state of the art of 12 bar. The combustion behavior of fuels is tested in an externally heated quartz tube, with a diameter less than the conventional quenching diameter of the fuel. The ultimate objective of the experiment is to investigate the impact of fuel on flame characteristics. The ability to reach engine relevant pressure conditions and its inherent small volume requirements make this device a potential candidate for measurements of laboratory transportation fuels and fuel blends. For initial validation, tests from an earlier intermediate pressure experiment with ethane/air and nitrogen mixtures are repeated. Chemiluminescence images are taken to evaluate the combustion characteristics in terms of the three classical flame regimes: weak flames, Flames with Repetitive Extinction, and Ignition (FREI) and normal flames. Previous results at intermediate pressure showed that as the pressure increases, the weak flame and FREI regimes shift towards lower velocities. Also, as dilution level increase (i.e. reducing oxygen concentration), the transition from the weak flame to FREI becomes less abrupt and is completely lost for marginal oxygen concentration. The objective of this study is to document flame dynamics at higher pressures.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ajith Amsasekar ◽  
Rahul S. Mor ◽  
Anand Kishore ◽  
Anupama Singh ◽  
Saurabh Sid

Purpose The increased demand for high-quality, nutritionally rich processed food has led to non-thermal food processing technologies like high pressure processing (HPP), a novel process for microbial inactivation with minimal loss of nutritional and sensory properties. The purpose of this paper is to highlight the impact of HPP on the microbiological, nutritional and sensory properties of food. Design/methodology/approach Recent research on the role of HPP in maintaining food quality and safety and the impact of process conditions with respect to various food properties have been explored in this paper. Also, the hurdle approach and the effectiveness of HPP on food quality have been documented. Findings HPP has been verified for industrial application, fulfilling the consumer demand for processed food with minimum nutrition loss at low temperatures. The positive impact of HPP with other treatments is known as the hurdle approach that enhances its impact against microorganism activity and minimizes the effects on nutrition and sensory attributes. Originality/value This paper highlights the impact of HPP on various food properties and a good alternative as non-thermal technology for maintaining shelf life, sensory properties and retention of nutrients.


Sign in / Sign up

Export Citation Format

Share Document