Towards a High-Pressure Microchannel Reactor for Fuel Characterization

2021 ◽  
Author(s):  
David Akinpelu ◽  
Ingmar Schoegl

Abstract Within the area of combustion, externally heated microtubes have been introduced to study the combustion characteristics of fuels and fuel blends. Microreactors have advantages over other conventional fuel testing methods because of their potential to test small volumes (< 20 μl) at high throughput. In this work, a high-pressure microreactor is designed and implemented to test fuels up to a pressure of 20 bar where automated testing reduces test time substantially. The novelty of this device is its capability to operate at pressure exceeding the current state of the art of 12 bar. The combustion behavior of fuels is tested in an externally heated quartz tube, with a diameter less than the conventional quenching diameter of the fuel. The ultimate objective of the experiment is to investigate the impact of fuel on flame characteristics. The ability to reach engine relevant pressure conditions and its inherent small volume requirements make this device a potential candidate for measurements of laboratory transportation fuels and fuel blends. For initial validation, tests from an earlier intermediate pressure experiment with ethane/air and nitrogen mixtures are repeated. Chemiluminescence images are taken to evaluate the combustion characteristics in terms of the three classical flame regimes: weak flames, Flames with Repetitive Extinction, and Ignition (FREI) and normal flames. Previous results at intermediate pressure showed that as the pressure increases, the weak flame and FREI regimes shift towards lower velocities. Also, as dilution level increase (i.e. reducing oxygen concentration), the transition from the weak flame to FREI becomes less abrupt and is completely lost for marginal oxygen concentration. The objective of this study is to document flame dynamics at higher pressures.

2021 ◽  
Author(s):  
A. Ciani ◽  
L. Tay-Wo-Chong ◽  
A. Amato ◽  
E. Bertolotto ◽  
G. Spataro

Abstract Fuel flexibility in gas turbine development has become increasingly important and modern engines need to cope with a broad variety of fuels. The target to operate power plants with hydrogen-based fuels and low emissions will be of paramount importance in a future focusing on electric power decarbonization. Ansaldo Energia AE94.3A engine acquired broad experience with operation of various natural gas and hydrogen fuel blends, starting in 2006 in the Brindisi (Italy) power plant. Based on the exhaustive experience acquired in the field, this paper describes the latest advancements characterizing the operation of the AE94.3A burner with high pressure combustion tests adding hydrogen blends ranging from 0 to 40% in volume. The interpretation of the test results is supported by reactive and non-reactive simulations describing the effects of varying fuel reactivity on the flame structure as well as the impact of fuel / air momentum flux ratio on the fuel / air interaction and fuel distribution in the combustion chamber. As expected, increasing amounts of hydrogen in the fuel are also associated with higher amounts of NOx production, however this effect could be countered by optimization of the fuel staging strategy, based on the mentioned CFD considerations and feedback from high pressure tests.


2017 ◽  
Vol 17 (17th International Conference) ◽  
pp. 1-15
Author(s):  
Aly Elzahaby ◽  
Medhat Elkelawy ◽  
Hagar Bastawissi ◽  
Saad El-Malla ◽  
Abdel Moneim Naceb

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 264
Author(s):  
Wenhan Zhao ◽  
Jiancheng Li ◽  
Lijun Liu

The continuous-feeding Czochralski method is a cost-effective method to grow single silicon crystals. An inner crucible is used to prevent the un-melted silicon feedstock from transferring to the melt-crystal interface in this method. A series of global simulations were carried out to investigate the impact of the inner crucible on the oxygen impurity distributions at the melt-crystal interface. The results indicate that, the inner crucible plays a more important role in affecting the O concentration at the melt-crystal interface than the outer crucible. It can prevent the oxygen impurities from being transported from the outer crucible wall effectively. Meanwhile, it also introduces as a new source of oxygen impurity in the melt, likely resulting in a high oxygen concentration zone under the melt-crystal interface. We proposed to enlarge the inner crucible diameter so that the oxygen concentration at the melt-crystal interface can be controlled at low levels.


2014 ◽  
Vol 248 ◽  
pp. 107-121 ◽  
Author(s):  
Jan Henrik Finke ◽  
Svea Niemann ◽  
Claudia Richter ◽  
Thomas Gothsch ◽  
Arno Kwade ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


Author(s):  
K Sooknunan ◽  
M Lochner ◽  
Bruce A Bassett ◽  
H V Peiris ◽  
R Fender ◽  
...  

Abstract With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the eleven classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78%. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97%, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19%.


2015 ◽  
Vol 18 (6) ◽  
pp. 539-559 ◽  
Author(s):  
Mattie Toma

Choking under pressure represents a phenomenon in which individuals faced with a high-pressure situation do not perform as well as would be expected were they performing under normal conditions. In this article, I identify determinants that predict a basketball player’s susceptibility to choking under pressure. Identification of these determinants adds to our understanding of players’ psychology at pivotal points in the game. My analysis draws on play-by-play data from ESPN.com that feature over 2 million free-throw attempts in women’s and men’s college and professional basketball games from the 2002-2013 seasons. Using regression analysis, I explore the impact of both gender and level of professionalism on performance in high-pressure situations. I find that in the final 30 seconds of a tight game, Women’s National Basketball Association and National Basketball Association players are 5.81 and 3.11 percentage points, respectively, less likely to make a free throw, while female and male college players are 2.25 and 2.09 percentage points, respectively, less likely to make a free throw, though statistical significance cannot be established among National Collegiate Athletic Association women. The discrepancy in choking between college and professional players is pronounced when comparing male college players who do and do not make it to the professional level; the free-throw performance of those destined to go pro falls 6 percentage points more in high-pressure situations. Finally, I find that women and men do not differ significantly in their propensity to choke.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Kozawa ◽  
Kayo Fukuyama ◽  
Kizuku Kushimoto ◽  
Shingo Ishihara ◽  
Junya Kano ◽  
...  

AbstractMechanochemical reactions can be induced in a solution by the collision of balls to produce high-temperature and high-pressure zones, with the reactions occurring through a dissolution–precipitation mechanism due to a change in solubility. However, only a fraction of the impact energy contributes to the mechanochemical reactions, while the rest is mainly consumed by the wear of balls and the heat generation. To clarify whether the normal or tangential component of collisions makes a larger contribution on the reaction, herein we studied the effect of collision direction on a wet mechanochemical reaction through combined analysis of the experimental reaction rates and simulated ball motion. Collisions of balls in the normal direction were found to contribute strongly to the wet mechanochemical reaction. These results could be used to improve the synthesis efficiency, predict the reaction, and lower the wear in the wet mechanochemical reactions.


Sign in / Sign up

Export Citation Format

Share Document