Influence of gelatinization process and HMDSO plasma treatment on the chemical changes and water vapor permeability of corn starch films

2019 ◽  
Vol 135 ◽  
pp. 196-202 ◽  
Author(s):  
Israel Sifuentes-Nieves ◽  
Guadalupe Neira-Velázquez ◽  
Ernesto Hernández-Hernández ◽  
Enrique Barriga-Castro ◽  
Carlos Gallardo-Vega ◽  
...  
2018 ◽  
Vol 105 ◽  
pp. 637-644 ◽  
Author(s):  
M.K.S. Monteiro ◽  
V.R.L. Oliveira ◽  
F.K.G. Santos ◽  
E.L. Barros Neto ◽  
R.H.L. Leite ◽  
...  

Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 384
Author(s):  
Juan Tirado-Gallegos ◽  
Paul Zamudio-Flores ◽  
José Ornelas-Paz ◽  
Claudio Rios-Velasco ◽  
Guadalupe Olivas Orozco ◽  
...  

Apple starch films were obtained from apples harvested at 60, 70, 80 and 90 days after full bloom (DAFB). Mechanical properties and water vapor permeability (WVP) were evaluated. The apple starch films at 70 DAFB presented higher values in the variables of tensile strength (8.12 MPa), elastic modulus (3.10 MPa) and lower values of water vapor permeability (6.77 × 10−11 g m−1 s−1 Pa−1) than apple starch films from apples harvested at 60, 80 and 90 DAFB. Therefore, these films were chosen to continue the study incorporating ellagic acid (EA). The EA was added at three concentrations [0.02% (FILM-EA0.02%), 0.05% (FILM-EA0.05%) and 0.1% (FILM-EA0.1%) w/w] and compared with the apple starch films without EA (FILM-Control). The films were characterized by their physicochemical, optical, morphological and mechanical properties. Their thermal stability and antioxidant capacity were also evaluated. The FILM-Control and FILM-EA0.02% showed a uniform surface, while FILM-EA0.05% and FILM-EA0.1% showed a rough surface and insoluble EA particles. Compared to FILM-Control, EA modified the values of tensile strength, elasticity modulus and elongation at break. The antioxidant capacity increased as EA concentration did. EA incorporation allowed obtaining films with higher antioxidant capacity, capable of blocking UV light with better mechanical properties than film without EA.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1606
Author(s):  
Peng Yin ◽  
Jinglong Liu ◽  
Wen Zhou ◽  
Panxin Li

To improve the functional properties of starch-based films, chitin (CH) was prepared from shrimp shell powder and incorporated into corn starch (CS) matrix. Before blending, maleic anhydride (MA) was introduced as a cross-linker. Composite CS/MA-CH films were obtained by casting-evaporation approach. Mechanical property estimation showed that addition of 0–7 wt % MA-CH improved the tensile strength of starch films from 3.89 MPa to 9.32 MPa. Elongation at break of the films decreased with the addition of MA-CH, but the decrease was obviously reduced than previous studies. Morphology analysis revealed that MA-CH homogeneously dispersed in starch matrix and no cracks were found in the CS/MA-CH films. Incorporation of MA-CH decreased the water vapor permeability of starch films. The water uptake of the films was reduced when the dosage of MA-CH was below 5 wt %. Water contact angles of the starch films increased from 22° to 86° with 9 wt % MA-CH incorporation. Besides, the composite films showed better inhibition effect against Escherichia coli and Staphylococcus aureus than pure starch films.


2013 ◽  
Vol 469 ◽  
pp. 156-161 ◽  
Author(s):  
Hong Pan ◽  
Dan Xu ◽  
Qin Liu ◽  
Hui Qing Ren ◽  
Min Zhou

Starch-based nanocomposite films were fabricated by the incorporation of different amounts of nanodiamond (ND) particles. These films were characterized by SEM, FT-IR, TGA, tensile testing and water vapor permeability measurement. It was observed that at low loadings, ND dispersed well in starch matrix. However, as the loading amount increased, aggregates as large as several micrometers appeared. The physical blending of ND with starch didnt change the thermal degradation mechanisms of starch films, only increased the char residues. As the ND loading increased, the tensile strength of composite films increased but the elongation at break decreased. However, the water vapor permeability increased as the loading of ND increased due to the increased microspores in films. With further modifications, ND may be considered as a novel of biocompatible nanofillers for reinforcement of biopolymers for food packaging applications.


2010 ◽  
Vol 152-153 ◽  
pp. 1525-1528
Author(s):  
Lu Zhu ◽  
Wei Lin Xu

Surface modification of plasma treatment was employed to improve the interface between silk fibroin (SF) powder and polyurethane (PU) in preparation of SF powder/PU blend film. Morphology analysis showed that plasma-treated blend film became dense and compact. The water vapor permeability of blend film from treated powder was significantly lowered. Plasma-treated artificial blood vessel was nearly waterproof, of which the water permeability was about 1/40 of the original value. Correspondingly, the compliance of plasma-treated vessel was enhanced remarkably, indicating it has better elasticity and flexibility which is more suitable for its application in tissue engineering.


2012 ◽  
Vol 506 ◽  
pp. 311-314 ◽  
Author(s):  
W. Pimpa ◽  
C. Pimpa ◽  
P. Junsangsree

Fresh durian seed consists largely of starch and can be considered such a suitable raw material for producing biodegradable films. The aim of this work was to develop biodegradable films based on durian seed starch (DSS) and to characterize their water barrier, microscopic and mechanical properties. DSS films were prepared by casting with glycerol as plasticizer. Corn starch and cassava starch, commonly used in food processing, were chosen to prepare films and compare their properties to the DSS-based films. Using a second biopolymer, carboxymethyl cellulose (CMC), in the DSS based composite has been studied as a strategy to improve their important properties. Water vapor permeability and elongation values were improved significantly (p<0.05) when 5% (w/w DSS) CMC was incorporated. Therefore, preparing biodegradable films from DSS is a new alternative for using this raw material which is sometimes much cheaper than commercial starches


2001 ◽  
Vol 49 (2) ◽  
pp. 131-145 ◽  
Author(s):  
M. Lundbäck ◽  
M. S. Hedenqvist ◽  
A. Jansson ◽  
A. Wirsén ◽  
A.-C. Albertsson ◽  
...  

2009 ◽  
Vol 52 (6) ◽  
pp. 1505-1512 ◽  
Author(s):  
Fábio Avelino Bublitz Ferreira ◽  
Maria Victória Eiras Grossmann ◽  
Suzana Mali ◽  
Fábio Yamashita ◽  
Lisandro Pavie Cardoso

The effect of monoglyceride on microstructural, barrier and mechanical properties of casted yam starch films were investigated in different relative humidities (RH) and compared with glycerol-starch films. A single screw extruder was used to produce the starch - monoglyceride complex before film production and this process was effective to inhibit the phase separation in films. The addition of the hydrophobic compound reduced hydrophobicity, transparency and water vapor permeability of films. This later value for starch-glycerol film (1.7 x 10-10 g Pa-1 s-1 m-1) was higher than starch (1.2 x 10-10 g Pa-1 s-1 m-1) and monoglyceride-starch films (1.0 x 10-10 g Pa-1 s-1 m-1). Films containing glycerol had higher relative crystallinity (B and V H) with a slight increase at higher RH values, while for monoglyceride films, the crystallinity was constant. Monoglyceride-starch films presented poor mechanical properties when compared to glycerol- starch ones but they presented a stable behavior under different relative humidities.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2516
Author(s):  
Alex López-Córdoba

Paipa cheese is the only Colombian semi-ripened cheese with protected geographical indication. In the current work, the effect of applying starch coatings carrying carvacrol on Paipa cheeses was analyzed. Coatings were prepared based on blends of potato starch (2 g/100 g), carvacrol (0.1 g/100 g), polysorbate 80, glycerol, and water and applied to the cheese’s surface by brushing. Uncoated cheeses were also analyzed for comparison. Moreover, films were prepared and characterized in terms of their moisture content, water vapor permeability, mechanical properties, transparency, water solubility, swelling (%), and antioxidant activity. Carvacrol/starch films showed a slight decrease in their water solubility and Young’s modulus, while not significant changes were observed in water vapor permeability, moisture content, transparency, and swelling behavior, in comparison with the starch films. After application on the Paipa cheeses, the carvacrol/starch coatings enhanced the brightness of the cheeses without causing significant changes in water activity, moisture content, color attributes, and mesophilic aerobic bacteria and molds/yeasts count. Moreover, edible coatings have a significant effect on the hardness, the gumminess, the springiness, and the chewiness of the Paipa cheese. Coated cheeses were better preserved at day 60 of storage because they did not show changes in their lightness, hardness, and springiness.


Sign in / Sign up

Export Citation Format

Share Document