Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices

2009 ◽  
Vol 128 (3) ◽  
pp. 473-483 ◽  
Author(s):  
Raffaella Di Cagno ◽  
Rosalinda F. Surico ◽  
Annalisa Paradiso ◽  
Maria De Angelis ◽  
Jean-Christophe Salmon ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1435
Author(s):  
Hee Seo ◽  
Jae-Han Bae ◽  
Gayun Kim ◽  
Seul-Ah Kim ◽  
Byung Hee Ryu ◽  
...  

The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. This study aimed to evaluate the suitability of probiotic lactic acid bacteria (LAB) as a starter for kimchi fermentation. Seventeen probiotic type strains were tested for their growth rates, volatile aroma compounds, metabolites, and sensory characteristics of kimchi, and their characteristics were compared to those of Leuconostoc (Le.) mesenteroides DRC 1506, a commercial kimchi starter. Among the tested strains, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Ligilactobacillus salivarius exhibited high or moderate growth rates in simulated kimchi juice (SKJ) at 37 °C and 15 °C. When these five strains were inoculated in kimchi and metabolite profiles were analyzed during fermentation using GC/MS and 1H-NMR, data from the principal component analysis (PCA) showed that L. fermentum and L. reuteri were highly correlated with Le. mesenteroides in concentrations of sugar, mannitol, lactate, acetate, and total volatile compounds. Sensory test results also indicated that these three strains showed similar sensory preferences. In conclusion, L. fermentum and L. reuteri can be considered potential candidates as probiotic starters or cocultures to develop health-promoting kimchi products.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Dominika Jurášková ◽  
Susana C. Ribeiro ◽  
Celia C. G. Silva

The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.


2018 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Fathyah Hanum Pamungkaningtyas ◽  
Mariyatun Mariyatun ◽  
Rafli Zulfa Kamil ◽  
Ryan Haryo Setyawan ◽  
Pratama Nur Hasan ◽  
...  

Lactic acid bacteria have been isolated from several Indonesian indigenous fermented foods and screened for the potential strains as probiotic candidates. The aim of this study was to evaluate sensory properties and respondents’ preference of yogurt-like set and yogurt-like drink with various Indonesian indigenous probiotic strains produced by dairy industry. Indigenous probiotics of Lactobacillus plantarum MUT-7 and Lactobacillus plantarum DAD-13 were used to produce yogurt-like set and yogurt-like drink. Family perception toward yogurt-like drink was performed in Yogyakarta involving 100 family members. The yogurt-like products were also compared to yogurt containing commercial Lactobacilus bulgaricus and Streptococus thermophilus or commercial yogurt produced by dairy company. Several sensory evaluation toward sensory properties and panelist’s preference were performed in different cities.  The result showed that the indigenous probiotic L. plantarum DAD-13 and L. plantarum MUT-7 were potential to be used as a starter culture for the production of yogurt-like set and yogurt-like drink. The combination of indigenous probiotics and indigenous lactic acid bacteria S. thermophilus DAD-11 resulted in better sensory properties of yogurt set compared to combination of L. bulgaricus and S. thermophilus. 


2007 ◽  
Vol 73 (22) ◽  
pp. 7283-7290 ◽  
Author(s):  
S. Siragusa ◽  
M. De Angelis ◽  
R. Di Cagno ◽  
C. G. Rizzello ◽  
R. Coda ◽  
...  

ABSTRACT The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.


Author(s):  
Normayanti Normayanti ◽  
Dewi Kartika Sari ◽  
Rita Khairina

Bekasam is a fermented fish product made from fish, salt, and roasted rice or rice that is mixed and fermented for 7 days. This study aims to determine the effect of the addition of ground chili at different concentrations on total acid, pH value, total lactic acid bacteria, and sensory properties of cork fish bekasam. The research design used was completely randomized design, 3 treatments and 3 replications. The treatments given were IBG without the addition of ground chili, IBGC1 adding 10% ground chili and IBGC2 adding 20% ground chili. Data were collected for total acid, pH, and total lactic acid bacteria fermentation days 1, 3, 5, and 7. The sensory properties were observed on days 1 and 7. The results showed that the addition of ground chili can reduce pH during 7 days fermentation, but the increase in total acid was not significant. The addition of 10% ground chili has a positive effect on the growth of lactic acid bacteria. The addition of 20% ground chili showed an inhibition of the growth of lactic acid bacteria during fermentation. Sensory test results stated that panelists preferred bekasam with the addition of 10% ground chili compared to control brakes and the addition of 20% ground chili.


Author(s):  
Yong Jun Goh ◽  
Rodolphe Barrangou

Diverse Lactobacillus strains are widely used as probiotic cultures in the dairy and dietary supplements industries, and specific strains such as Lactobacillus acidophilus NCFM have been engineered for the development of biotherapeutics. To expand the Lactobacillus manipulation toolbox with enhanced efficiency and ease, we present here a CRISPR-SpyCas9D10A nickase (Cas9N)-based system for programmable engineering of L. acidophilus NCFM, a model probiotic bacterium. Successful single-plasmid delivery system was achieved with the engineered pLbCas9N vector harboring cas9N under the regulation of a Lactobacillus promoter and a cloning region for customized sgRNA and editing template. The functionality of the pLbCas9N system was validated in NCFM with targeted chromosomal deletions ranging between 300 bp and 1.9 kb at various loci (rafE, lacS and ltaS), yielding 35-100% mutant recovery rates. Genome analysis of the mutants confirmed precision and specificity of the pLbCas9N system. To showcase the versatility of this system, we also inserted a mCherry fluorescent protein gene downstream of the pgm gene to create a polycistronic transcript. The pLbCas9N system was further deployed in other species to generate concurrent single base substitution and gene deletion in Lactobacillus gasseri ATCC 33323, and an in-frame gene deletion in Lactobacillus paracasei Lpc-37, highlighting the portability of the system in phylogenetically distant Lactobacillus species, where its targeting activity was not interfered by endogenous CRISPR-Cas systems. Collectively, these editing outcomes illustrate the robustness and versatility of the pLbCas9N system for genome manipulations in diverse lactobacilli, and open new avenues for the engineering of health-promoting lactic acid bacteria. Importance This work describes the development of a broad-host range CRISPR-based editing system for genome manipulations in three Lactobacillus species, which belong to lactic acid bacteria (LAB) commonly known for their long history of use in food fermentations and as indigenous members of healthy microbiota, and their emerging roles in human and animal commercial health-promoting applications.  We exploited the established CRISPR-SpyCas9 nickase for flexible and precise genome editing applications in Lactobacillus acidophilus, and further demonstrated the efficacy of this universal system in two distantly related Lactobacillus species.  This versatile Cas9-based system facilitates genome engineering compared to conventional gene replacement systems, and represents a valuable gene editing modality in species that do not possess native CRISPR-Cas systems.  Overall, this portable tool contributes to expanding the genome editing toolbox of LAB for studying their health-promoting mechanisms and engineering of these beneficial microbes as next-generation vaccines and designer probiotics.


2021 ◽  
Vol 18 (120) ◽  
pp. 111-119
Author(s):  
Maliheh Rahimzadeh ◽  
Vahid Hakimzadeh ◽  
Ahmad Nasiri Mahalati ◽  
◽  
◽  
...  

2020 ◽  
Vol 44 (4) ◽  
pp. 454-489 ◽  
Author(s):  
Francesca De Filippis ◽  
Edoardo Pasolli ◽  
Danilo Ercolini

ABSTRACT Lactic acid bacteria (LAB) are present in foods, the environment and the animal gut, although fermented foods (FFs) are recognized as the primary niche of LAB activity. Several LAB strains have been studied for their health-promoting properties and are employed as probiotics. FFs are recognized for their potential beneficial effects, which we review in this article. They are also an important source of LAB, which are ingested daily upon FF consumption. In this review, we describe the diversity of LAB and their occurrence in food as well as the gut microbiome. We discuss the opportunities to study LAB diversity and functional properties by considering the availability of both genomic and metagenomic data in public repositories, as well as the different latest computational tools for data analysis. In addition, we discuss the role of LAB as potential probiotics by reporting the prevalence of key genomic features in public genomes and by surveying the outcomes of LAB use in clinical trials involving human subjects. Finally, we highlight the need for further studies aimed at improving our knowledge of the link between LAB-fermented foods and the human gut from the perspective of health promotion.


Sign in / Sign up

Export Citation Format

Share Document