A stochastic approach for modelling the effects of temperature on the growth rate of Bacillus cereus sensu lato

Author(s):  
Yvan Le Marc ◽  
Nathaliá Buss Da Silva ◽  
Florence Postollec ◽  
Véronique Huchet ◽  
József Baranyi ◽  
...  
2019 ◽  
Vol 17 ◽  
Author(s):  
Farzane Kargar ◽  
Mojtaba Mortazavi ◽  
Mahmood Maleki ◽  
Masoud Torkzadeh Mahani ◽  
Younes Ghasemi ◽  
...  

Aims: The purpose of this study was to screen the bacteria producing cellulase enzymes and their bioinformatics studies. Background: Cellulose is a long-chain polymer of glucose that hydrolyzes by cellulases to glucose molecules. In order to design the new biotechnological applications, some strategies have been used as increasing the efficiency of enzyme production, generating cost-effective enzymes, producing stable enzymes and identification of new strains. Objective: On the other hand, some bacteria special features have made them suitable candidates for the identification of the new source of enzymes. In this regard, some native strains of bacteria were screened. Method: These bacteria were grown on a culture containing the liquid M9 media containing CMC to ensure the synthesis of cellulase. The formation of a clear area in the culture medium indicated decomposition of cellulose. In the following, the DNA of these bacteria were extracted and their 16S rDNA genes were amplified. Result: The results show that nine samples were able to synthesize cellulase. In following, these strains were identified using 16S rDNA. The results show that these screened bacteria belonged to the Bacillus sp., Alcaligenes sp., Alcaligenes sp., and Enterobacter sp.conclusionThe enzyme activity analysis shows that the Bacillus toyonensis, Bacillus sp. strain XA15-411 Bacillus cereus have produced the maximum yield of cellulases. However, these amounts of enzyme production in these samples are not proportional to their growth rate. As the bacterial growth chart within 4 consecutive days shows that the Alcaligenes sp. Bacillus cereus, Bacillus toyonensis, Bacillus sp. strain XA15-411 have a maximum growth rate. The study of the phylogenetic tree also shows that Bacillus species are more abundant in the production of cellulase enzyme. These bioinformatics analyses show that the Bacillus species have different evolutionary relationships and evolved in different evolutionary time. Other: However, for maximum cellulase production by this bacteria, some information as optimum temperature, optimum pH, carbon and nitrogen sources are needed for the ideal formulation of media composition. The cellulase production is closely controlled in microorganisms and the cellulase yields appear to depend on a variety of factors. However, the further studies are needed for cloning, purification and application of these new microbial cellulases in the different commercial fields as in food, detergent, and pharmaceutical, paper, textile industries and also various chemical industries. However, these novel enzymes can be further engineered through rational design or using random mutagenesis techniques.


2009 ◽  
Vol 5 (4) ◽  
pp. 568-570 ◽  
Author(s):  
Roger S. Seymour ◽  
Yuka Ito ◽  
Yoshihiko Onda ◽  
Kikukatsu Ito

The effects of temperature on pollen germination and pollen tube growth rate were measured in vitro in thermogenic skunk cabbage, Symplocarpus renifolius Schott ex Tzvelev, and related to floral temperatures in the field. This species has physiologically thermoregulatory spadices that maintain temperatures near 23°C, even in sub-freezing air. Tests at 8, 13, 18, 23, 28 and 33°C showed sharp optima at 23°C for both variables, and practically no development at 8°C. Thermogenesis is therefore a requirement for fertilization in early spring. The narrow temperature tolerance is probably related to a long period of evolution in flowers that thermoregulate within a narrow range.


1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate


1995 ◽  
Vol 31 (11) ◽  
pp. 173-180 ◽  
Author(s):  
M. van der Ploeg ◽  
M. E. Dennis ◽  
M. Q. de Regt

Relative abundance of Oscillatoria cf. chalybea was monitored during May-November, 1993, in 40 ponds at four catfish farms located 50-100 km apart in west central Mississippi, USA. The occurrence of O. cf.chalybea coincided with the period that water temperatures remained above 20°C. In 70% of ponds, O. cf.chalybea was present for a period of 2-20 weeks. The alga recurred in all ponds where it had been present in 1990 and 1991. The effects of temperature and light availability on growth rate and 2-methylisoborneol (MIB) production of O. cf. chalybea were studied in continuous cultures. At 28°C, maximum specific growth rates were 0.8 d−1 (24 h light) and 0.6 d−1 (14 h light :10 h dark). Algal cells contained less MIB when adapted to the shorter light cycle than when grown under continuous light. Specific growth rate of O. cf.chalybea dropped from 0.3 to 0.1 d−1 when temperature was changed from 21 to 19.5°C (14 h light).


2004 ◽  
Vol 313 (1) ◽  
pp. 63-73 ◽  
Author(s):  
O. Chomsky ◽  
Y. Kamenir ◽  
M. Hyams ◽  
Z. Dubinsky ◽  
N.E. Chadwick-Furman

2000 ◽  
Vol 63 (2) ◽  
pp. 268-272 ◽  
Author(s):  
DANA M. McELROY ◽  
LEE-ANN JAYKUS ◽  
PEGGY M. FOEGEDING

The growth of psychrotrophic Bacillus cereus 404 from spores in boiled rice was examined experimentally at 15, 20, and 30°C. Using the Gompertz function, observed growth was modeled, and these kinetic values were compared with kinetic values for the growth of mesophilic vegetative cells as predicted by the U.S. Department of Agriculture's Pathogen Modeling Program, version 5.1. An analysis of variance indicated no statistically significant difference between observed and predicted values. A graphical comparison of kinetic values demonstrated that modeled predictions were “fail safe” for generation time and exponential growth rate at all temperatures. The model also was fail safe for lag-phase duration at 20 and 30°C but not at l5°C. Bias factors of 0.55, 0.82, and 1.82 for generation time, lag-phase duration, and exponential growth rate, respectively, indicated that the model generally was fail safe and hence provided a margin of safety in its growth predictions. Accuracy factors of 1.82, 1.60, and 1.82 for generation time, lag-phase duration, and exponential growth rate, respectively, quantitatively demonstrated the degree of difference between predicted and observed values. Although the Pathogen Modeling Program produced reasonably accurate predictions of the growth of psychrotrophic B. cereus from spores in boiled rice, the margin of safety provided by the model may be more conservative than desired for some applications. It is recommended that if microbial growth modeling is to be applied to any food safety or processing situation, it is best to validate the model before use. Once experimental data are gathered, graphical and quantitative methods of analysis can be useful tools for evaluating specific trends in model prediction and identifying important deviations between predicted and observed data.


2020 ◽  
Author(s):  
Lei Qin ◽  
Qiang Sun ◽  
Jiani Shao ◽  
Yang Chen ◽  
Xiaomei Zhang ◽  
...  

Abstract Background: The effects of temperature and humidity on the epidemic growth of coronavirus disease 2019 (COVID-19)remains unclear.Methods: Daily scatter plots between the epidemic growth rate (GR) and average temperature (AT) or average relative humidity (ARH) were presented with curve fitting through the “loess” method. The heterogeneity across days and provinces were calculated to assess the necessity of using a longitudinal model. Fixed effect models with polynomial terms were developed to quantify the relationship between variations in the GR and AT or ARH.Results: An increased AT dramatically reduced the GR when the AT was lower than −5°C, the GR was moderately reduced when the AT ranged from −5°C to 15°C, and the GR increased when the AT exceeded 15°C. An increasedARH increased theGR when the ARH was lower than 72% and reduced theGR when the ARH exceeded 72%.Conclusions: High temperatures and low humidity may reduce the GR of the COVID-19 epidemic. The temperature and humidity curves were not linearly associated with the COVID-19 GR.


1935 ◽  
Vol 116 (800) ◽  
pp. 479-493 ◽  

Although temperature and gravity both influence plant life, and although both factors have been studied for many decades, there is surprisingly little literature decades, there is surprisingly little literature dealing with the relation between the two; and none, so far as I can discover, on the effect in any Pteridophyte. Navez (1929) who criticized the work of some investigators on the effect of temperature on the geotropism of a few seedlings, sums up the present position in his remark that the conclusions of workers are very different and often in opposition. The present paper gives the results of 1100 experiments carried out mainly between the years 1922 and 1927, and though it is realized that much remains to be done on the question, it is believed that the results which have been obtained are of some value. For general methods, reference may be made to previous “Studies” in this series. Geotropic sensitivity, as measured by presentation time at different stages in development of the frond, was fully worked out by Waight (1923) for 20°C, and is adopted here as a standard of reference. The growth rate recorded in the tables is that for the particular frond under investigation, or is the average of the fronds examined during the day of the experiment. Nearly all the experiments included in the tables were conducted during the months of April-October, as I have since been able to show that there is an annual rhythm in geotropic irritability. A decrease in sensitivity occurs in winter, and hence experiments performed in November-March are not strictly comparable with those carried out in the summer. The following abbreviations are used:- P.S. = period of stimulation. P.T. = presentation time, i. e ., the minimum period of stimulation in a horizontal position, which, under the given conditions, will cause a movement of approximately 5° in about 80% of the fronds. L.T. = latent time (Prankerd, 1925) in hours. N = “normal time,” i. e ., the P.T. For different stages of the frond at 20°C (see Waight, 1923).


Sign in / Sign up

Export Citation Format

Share Document