scholarly journals Numerical assessment of heat transfer and mixing quality of a hybrid nanofluid in a microchannel equipped with a dual mixer

Author(s):  
Pouya Barnoon
2020 ◽  
pp. 9-14 ◽  
Author(s):  
Acharya Anil Ramchandra ◽  
R. Kadam ◽  
A. T. Pise

Here the investigations are done while distillation of ethanol-water mixture for separating ethanol from fermentation process. Focus is to study reduction in time required and hence saving in energy for the distillation process of ethanol-water mixture under the influence of surface-active agents (Surfactants). This novelty is from observation of these surfactants to enhance heat transfer rate because of surface tension reduction in aqueous solutions. SDS (Sodium Dodecyl Sulphate), NH4Cl (Ammonium Chloride) and SLBS (Sodium lauryl benzene sulphonate) surfactants in different concentration are experimented. The concentration of these surfactant is varied from 1700 ppm to 2800 ppm. This range is decided by observing critical micelle concentration of used surfactants. Results showed that time is reduced and hence energy consumption is also reduced. Results shown by NH4Cl are found to be more useful as it is ecofriendly surfactant which is not affecting ethanol-water mixture. Use of ammonium chloride as surfactant in distillation is actually useful to reduce energy without hampering the quality of process is the novelty of this work.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.


2021 ◽  
Vol 11 (10) ◽  
pp. 4683
Author(s):  
Areum Lee ◽  
Chinnasamy Veerakumar ◽  
Honghyun Cho

This paper discusses the forced convective heat transfer characteristics of water–ethylene glycol (EG)-based Fe3O4 nanofluid and Fe3O4–MWCNT hybrid nanofluid under the effect of a magnetic field. The results indicated that the convective heat transfer coefficient of magnetic nanofluids increased with an increase in the strength of the magnetic field. When the magnetic field strength was varied from 0 to 750 G, the maximum convective heat transfer coefficients were observed for the 0.2 wt% Fe3O4 and 0.1 wt% Fe3O4–MWNCT nanofluids, and the improvements were approximately 2.78% and 3.23%, respectively. The average pressure drops for 0.2 wt% Fe3O4 and 0.2 wt% Fe3O4–MWNCT nanofluids increased by about 4.73% and 5.23%, respectively. Owing to the extensive aggregation of nanoparticles by the external magnetic field, the heat transfer coefficient of the 0.1 wt% Fe3O4–MWNCT hybrid nanofluid was 5% higher than that of the 0.2 wt% Fe3O4 nanofluid. Therefore, the convective heat transfer can be enhanced by the dispersion stability of the nanoparticles and optimization of the magnetic field strength.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 887
Author(s):  
Nabeela Parveen ◽  
Muhammad Awais ◽  
Saeed Ehsan Awan ◽  
Wasim Ullah Khan ◽  
Yigang He ◽  
...  

This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and convective temperature conditions over flow are studied. The problem is modeled using boundary layer theory, Maxwell’s equations and Fourier’s conduction law along with defined physical factors. Similarity transformations are utilized for model simplification which is analytically solved with the homotopy analysis method. The h-curves upto 20th order for solutions establishes the stability and convergence of the adopted computational method. Rheological impacts of involved parameters on flow variables and entropy generation number are demonstrated via graphs and tables. The study reveals that entropy in system of hybrid nanofluid affected by magnetic induction declines for [...]


Author(s):  
Le Xie ◽  
Guangwen He ◽  
Bin Yu ◽  
Shaowei Yan

Abstract In this study, the mixing quality of high-viscosity yield stress fluid (Carbopol aqueous solution) under laminar and turbulent flow regimes was evaluated through a numerical experimental study. A three-dimensional computational fluid dynamics large-eddy simulation (CFD-LES) model was employed to capture large-scale vortex structures. The proposed CFD model was validated by the experimental data in terms of mean velocity profiles and velocity-time history. Thereafter, the CFD model was applied to simulate the residence time distribution using the tracking technique: tracer pulse method and step method. In addition, the non-ideal flow phenomena caused by molecular diffusion and eddy diffusion were evaluated. The effects of the rheological properties on the mixing performance were also investigated. The presented results can provide useful guidance to enhance mass transfer in reactors with high-viscosity fluids.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 498
Author(s):  
Wasim Ullah Khan ◽  
Muhammad Awais ◽  
Nabeela Parveen ◽  
Aamir Ali ◽  
Saeed Ehsan Awan ◽  
...  

The current study is an attempt to analytically characterize the second law analysis and mixed convective rheology of the (Al2O3–Ag/H2O) hybrid nanofluid flow influenced by magnetic induction effects towards a stretching sheet. Viscous dissipation and internal heat generation effects are encountered in the analysis as well. The mathematical model of partial differential equations is fabricated by employing boundary-layer approximation. The transformed system of nonlinear ordinary differential equations is solved using the homotopy analysis method. The entropy generation number is formulated in terms of fluid friction, heat transfer and Joule heating. The effects of dimensionless parameters on flow variables and entropy generation number are examined using graphs and tables. Further, the convergence of HAM solutions is examined in terms of defined physical quantities up to 20th iterations, and confirmed. It is observed that large λ1 upgrades velocity, entropy generation and heat transfer rate, and drops the temperature. High values of δ enlarge velocity and temperature while reducing heat transport and entropy generation number. Viscous dissipation strongly influences an increase in flow and heat transfer rate caused by a no-slip condition on the sheet.


2021 ◽  
Vol 60 (4) ◽  
pp. 3593-3604
Author(s):  
Muhammad Danish Ikram ◽  
Muhammad Imran Asjad ◽  
Ali Akgül ◽  
Dumitru Baleanu

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ing Jiat Kendrick Wong ◽  
Ngieng Tze Angnes Tiong

AbstractThis paper presents the numerical study of thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts (square and rectangular). Turbulent regime is studied with the Reynolds number ranges from 10000 to 100000. The heat transfer performance and flow behaviour of hybrid nanofluid are investigated, considering the nanofluid volume concentration between 0.1 and 2%. The thermal performance factor of hybrid nanofluid is evaluated in terms of performance evaluation criteria (PEC). This present numerical results are successfully validated with the data from the literature. The results indicate that the heat transfer coefficient and Nusselt number of Al2O3-Cu/water hybrid nanofluid are higher than those of Al2O3/water nanofluid and pure water. However, this heat transfer enhancement is achieved at the expense of an increased pressure drop. The heat transfer coefficient of 2% hybrid nanofluid is approximately 58.6% larger than the value of pure water at the Reynolds number of 10000. For the same concentration and Reynolds number, the pressure drop of hybrid nanofluid is 4.79 times higher than the pressure drop of water. The heat transfer performance is the best in the circular pipe compared to the non-circular ducts, but its pressure drop increment is also the largest. The hybrid nanofluid helps to improve the problem of low heat transfer characteristic in the non-circular ducts. In overall, the hybrid nanofluid flow in circular and non-circular ducts are reported to possess better thermal performance factor than that of water. The maximum attainable PEC is obtained by 2% hybrid nanofluid in the square duct at the Reynolds Number of 60000. This study can help to determine which geometry is efficient for the heat transfer application of hybrid nanofluid.


Sign in / Sign up

Export Citation Format

Share Document