Investment costs and CO2 reduction potential of carbon capture from industrial plants – A Swedish case study

2018 ◽  
Vol 76 ◽  
pp. 111-124 ◽  
Author(s):  
Stefanía Ósk Garðarsdóttir ◽  
Fredrik Normann ◽  
Ragnhild Skagestad ◽  
Filip Johnsson
Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2432 ◽  
Author(s):  
Markewitz ◽  
Zhao ◽  
Ryssel ◽  
Moumin ◽  
Wang ◽  
...  

The share of global CO2 emissions deriving from the cement industry is about 5%. More than 50% of these are process-related and cannot be avoided. This paper addresses the application of CO2 capture technology to the cement industry. Analyses focusing on post-combustion technology for cement plants are carried out on the basis of detailed model calculations. Different heat supply variants for the regeneration of loaded wash solution were investigated. CO2 avoidance costs are in a range of 77 to 115 EUR/tCO2. The achievable CO2 avoidance rate for the investigated cases was determined to be 70% to 90%. CO2 reduction potentials were identified using CCS technology, focusing on the German cement industry as a case study. The results show that adopting carbon capture technology could lead to a significant reduction in CO2 emissions.


2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 482
Author(s):  
Hilmar Guzmán ◽  
Federica Zammillo ◽  
Daniela Roldán ◽  
Camilla Galletti ◽  
Nunzio Russo ◽  
...  

Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous and conductive GDE have been tested. Many system variables have been evaluated to find the most promising conditions able to lead to increased production of CO2 reduction liquid products, specifically: applied potentials, catalyst loading, Nafion content, KHCO3 electrolyte concentration, and the presence of metal oxides, like ZnO or/and Al2O3. In particular, the CO productivity increased at the lowest Nafion content of 15%, leading to syngas with an H2/CO ratio of ~1. Meanwhile, at the highest Nafion content (45%), C2+ products formation has been increased, and the CO selectivity has been decreased by 80%. The reported results revealed that the liquid crossover through the GDE highly impacts CO2 diffusion to the catalyst active sites, thus reducing the CO2 conversion efficiency. Through mathematical modelling, it has been confirmed that the increase of the local pH, coupled to the electrode-wetting, promotes the formation of bicarbonate species that deactivate the catalysts surface, hindering the mechanisms for the C2+ liquid products generation. These results want to shine the spotlight on kinetics and transport limitations, shifting the focus from catalytic activity of materials to other involved factors.


2021 ◽  
Vol 285 ◽  
pp. 116425
Author(s):  
B. Stolz ◽  
M. Held ◽  
G. Georges ◽  
K. Boulouchos

2021 ◽  
pp. 128973
Author(s):  
Liting Zhang ◽  
Yongwen Yang ◽  
Qifen Li ◽  
Weijun Gao ◽  
Fanyue Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document