scholarly journals Carbon Capture for CO2 Emission Reduction in the Cement Industry in Germany

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2432 ◽  
Author(s):  
Markewitz ◽  
Zhao ◽  
Ryssel ◽  
Moumin ◽  
Wang ◽  
...  

The share of global CO2 emissions deriving from the cement industry is about 5%. More than 50% of these are process-related and cannot be avoided. This paper addresses the application of CO2 capture technology to the cement industry. Analyses focusing on post-combustion technology for cement plants are carried out on the basis of detailed model calculations. Different heat supply variants for the regeneration of loaded wash solution were investigated. CO2 avoidance costs are in a range of 77 to 115 EUR/tCO2. The achievable CO2 avoidance rate for the investigated cases was determined to be 70% to 90%. CO2 reduction potentials were identified using CCS technology, focusing on the German cement industry as a case study. The results show that adopting carbon capture technology could lead to a significant reduction in CO2 emissions.

Author(s):  
Hassanean Jassim ◽  
Weizhuo Lu ◽  
Thomas Olofsson

Mass hauling operations play central roles in construction projects. They typically use many haulers that consume large amounts of energy and emit significant quantities of CO2. However, practical methods for estimating the energy consumption and CO2 emissions of such operations during project planning are lacking. This paper presents a detailed model for estimating the energy consumption and CO2 emissions of mass haulers that integrates the mass hauling plan with a set of predictive equations. The mass hauling plan is generated using a planning program such as DynaRoad in conjunction with data on the productivity of selected haulers and the amount of material to be hauled during cutting, filling, borrowing, and disposal operations. This plan is then used as input for estimating the energy consumption and CO2 emissions of the selected hauling fleet. The proposed model will help planners to assess the energy and environmental performance of mass hauling plans, and to select hauler and fleet configurations that will minimize these quantities. The model was applied in a case study, demonstrating that it can reliably predict energy consumption, CO2 emissions, and hauler productivity as functions of the hauling distance for individual haulers and entire hauling fleets.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 120
Author(s):  
Staffan Qvist ◽  
Paweł Gładysz ◽  
Łukasz Bartela ◽  
Anna Sowiżdżał

Out of 2 TWe of coal power plant capacity in operation globally today, more than half is less than 14 years old. Climate policy related to limiting CO2-emissions makes the longer-term operation of these plants untenable. In this study, we assess the spectrum of available options for the future of both equipment and jobs in the coal power sector by assessing the full scope of “retrofit decarbonization” options. Retrofit decarbonization is an umbrella term that includes adding carbon capture, fuel conversion, and the replacement of coal boilers with new low-carbon energy sources, in each case re-using as much of the existing equipment as economically practicable while reducing or eliminating emissions. This article explores this idea using the Polish coal power fleet as a case study. Retrofit decarbonization in Poland was shown to be most attractive using high-temperature small modular nuclear reactors (SMRs) to replace coal boilers, which can lower upfront capital costs by ~28–35% and levelized cost of electricity by 9–28% compared to a greenfield installation. If retrofit decarbonization is implemented globally by the late 2020s, up to 200 billion tons of otherwise-committed CO2-emissions could be avoided.


Author(s):  
Paulo Henrique da Silva Costa ◽  
Leisy Mikaelly Alves Teixeira ◽  
Janaína Cardoso Pinheiro ◽  
Fabiana Serra Arruda ◽  
Augusto César de Mendonça Brasil

This work aims to measure the reduction of Carbon Dioxide (CO2) emissions in atmosphere by replacing the modal urban bus by Light Rail Vehicle (VLT). In order to accomplish this objective, a case study in Brasilia, Federal District, in the stretch of VLT which passes on Via W-3 South was conducted. The Theory of Externalities that discusses the right to ownership of private and public goods and responsibilities about the positive and negative externalities caused by the agents and individuals of society was used to support the analyses. It was used the Top-Down method, which allowed the calculation the direct emissions of CO2. The values obtained on the reduction of CO2 emissions were converted into values of carbon credits as a way to economically measure such reductions.  The results showed a significant reduction in CO2 emissions per year and consequent environmental benefit.DOI: http://dx.doi.org/10.4995/CIT2016.2016.3480 


2013 ◽  
Vol 295-298 ◽  
pp. 2223-2226
Author(s):  
Chuan Lin Huo ◽  
Cheng Huo ◽  
Dao Ming Guan

Carbon capture and storage (CCS) is a significant strategic climate protection technology, and has become the most possibility and practical significance approach of emission reduction. CCS technology is the means to reduce the amount of CO2 into the atmosphere in the case of no reducing the amount of fossil fuels. China's CO2 emissions are the second in the world and it is difficult to change the current energy consumption in a short time. CO2 emissions will continue to increase with the rapid development of China's economy which will bring the huge CO2 emission reduction pressure. In this paper the CCS technology is introduced and the necessity and feasibility of CCS in China are analysed.


2018 ◽  
Vol 76 ◽  
pp. 111-124 ◽  
Author(s):  
Stefanía Ósk Garðarsdóttir ◽  
Fredrik Normann ◽  
Ragnhild Skagestad ◽  
Filip Johnsson

2020 ◽  
Vol 12 (18) ◽  
pp. 7402
Author(s):  
Bong Jae Lee ◽  
Jeong Il Lee ◽  
Soo Young Yun ◽  
Beom Gu Hwang ◽  
Cheol-Soo Lim ◽  
...  

This study introduces a novel methodology to calculate the carbon dioxide (CO2) emission reduction related to residual emissions, calculating the CO2 emission reduction through a 2 MW (40 tCO2/day) carbon capture and utilization (CCU) plant installed at a 500 MW coal-fired power plant in operation, to evaluate the accuracy, maintainability, and reliability of the quantified reduction. By applying the developed methodology to calculate the CO2 emission reduction, the established amount of CO2 reduction in the mineral carbonation was evaluated through recorded measurement and monitoring data of the 2 MW CCU plant at the operating coal-fired plant. To validate the reduction, the accuracy, reproducibility, consistency, and maintainability of the reduction should be secured, and based on these qualifications, it is necessary to evaluate the contribution rate of nationally determined contributions (NDCs) in each country. This fundamental study establishes the concept of CCU CO2 reduction and quantifies the reduction to obtain the validation of each country for the reduction. The established concept of the CCU in this study can also be applied to other CCU systems to calculate the reduction, thereby providing an opportunity for CCU technology to contribute to the NDCs in each country and invigorate the technology.


2021 ◽  
Vol 13 (2) ◽  
pp. 801
Author(s):  
Branimir Tramošljika ◽  
Paolo Blecich ◽  
Igor Bonefačić ◽  
Vladimir Glažar

This article presents the performance analysis of a 700 MW future planned advanced ultra-supercritical (A-USC) coal-fired power plant fitted with post-combustion carbon capture and storage (CCS) technology. The reference A-USC unit without CCS achieves a net efficiency of 47.6% with CO2 emissions of 700 kgCO2/MWh. Relatively to subcritical units, the net efficiency of the A-USC is 8%-pts higher while CO2 emissions are 16.5% lower. For a CO2 removal rate of 90%, the net efficiency of the CCS integrated A-USC unit is 36.8%. The resulting net efficiency loss is 10.8%-pts and the electricity output penalty is 362.3 kWhel/tCO2 for present state CCS technology. The study continues with the assessment of interface quantities between the capture unit and the steam cycle affecting the performance of the A-USC. Improved CO2 absorbents could alleviate the net efficiency loss by 2–3%-pts, and enhanced CO2 compression strategies and advanced heat integration could further reduce the efficiency loss by 0.5–1.2%-pts and 0.4–0.6%-pts, respectively. The total efficiency gain from CCS technology upgrades is estimated at 3.6%-pts, thus bringing down the net efficiency loss to 7.2%-pts and the electricity output penalty to 241.7 kWhel/tCO2.


Sign in / Sign up

Export Citation Format

Share Document