scholarly journals A simple model for breakup time prediction of water-heavy fuel oil emulsion droplets

Author(s):  
Stavros Fostiropoulos ◽  
George Strotos ◽  
Nikolaos Nikolopoulos ◽  
Manolis Gavaises
2021 ◽  
Vol 10 (3) ◽  
pp. 597-605
Author(s):  
Moalla Alaa ◽  
Soulayman Soulayman ◽  
Taan Abdelkarim ◽  
Zgheib Walid

In order to produce a water/heavy fuel oil emulsion (W/HFO) with different water contents to cover the daily needs of a fire tube boiler or a water tube boiler, a special homogenizer is designed, constructed and tested. The produced emulsion is characterized and compared with the pure HFO properties. It is found experimentally in fire tube boiler that, the use of W/HFO emulsion with 8% of water content (W0.08/HFO0.92) instead of HFO leads to a saving rate of 13.56% in HFO. For explaining the obtained energy saving the term “equivalent heat value (EHV) of the W/HFO emulsions”, defined as the ratio of the W/HFO emulsion net calorific value to the HFO content in the emulsion, is used. Based on direct measurements, provided in this work, it was found that the equivalent heat value (EHV) increases with the water content in the water/heavy fuel oil (W/HFO). It reaches 1.06 times of HFO net calorific value at water content of 22.24%. The obtained, in the present work, experimental results demonstrate the dependence of the emulsion EHV on its water content. These results are in agreement with the results of other authors. Therefore, the contribution of water droplets in the emulsion combustion is verified. It is found experimentally that, the emitted CO, SO2  and H2S gases from the fire tube boiler chimney decreases by 5.66%. 3.99% and 48.77% respectively in the case of (W0.08/HFO0.92) emulsion use instead of HFO.


Author(s):  
Laís A. Nascimento ◽  
Marilda N. Carvalho ◽  
Mohand Benachour ◽  
Valdemir A. Santos ◽  
Leonie A. Sarubbo ◽  
...  

2017 ◽  
Vol 68 ◽  
pp. 203-215 ◽  
Author(s):  
Dionisis Stefanitsis ◽  
Ilias Malgarinos ◽  
George Strotos ◽  
Nikolaos Nikolopoulos ◽  
Emmanouil Kakaras ◽  
...  

1996 ◽  
Vol 26 (2) ◽  
pp. 2241-2250 ◽  
Author(s):  
M.A. Byrnes ◽  
E.A. Foumeny ◽  
T. Mahmud ◽  
A.S.A.K. Sharifah ◽  
T. Abbas ◽  
...  

Author(s):  
F. Mikaela Nordborg ◽  
Diane L. Brinkman ◽  
Gerard F. Ricardo ◽  
Susana Agustí ◽  
Andrew P. Negri

Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


Langmuir ◽  
2017 ◽  
Vol 33 (49) ◽  
pp. 14087-14092 ◽  
Author(s):  
Kazuki Akamatsu ◽  
Koki Minezaki ◽  
Masumi Yamada ◽  
Minoru Seki ◽  
Shin-ichi Nakao

2021 ◽  
Vol 216 ◽  
pp. 106800
Author(s):  
Xinyan Pei ◽  
Paolo Guida ◽  
K.M. AlAhmadi ◽  
Ibrahim A. Al Ghamdi ◽  
Saumitra Saxena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document