scholarly journals Effect of water-in-heavy fuel oil emulsion on the non-reacting spray characteristics under dierent ambient conditions and injection pressures: A CFD study

2016 ◽  
Vol 23 (6) ◽  
pp. 2626-2640
Author(s):  
H. Nowruzi ◽  
P. Ghadimi
Meccanica ◽  
2016 ◽  
Vol 52 (1-2) ◽  
pp. 153-170 ◽  
Author(s):  
Parviz Ghadimi ◽  
Hashem Nowruzi ◽  
Mahdi Yousefifard ◽  
Mohammad A. Feizi Chekab

Author(s):  
Masoud Darbandi ◽  
Ali Fatin ◽  
Gerry E. Schneider

The flow and spray parameters can have noticeable roles in heavy fuel oil (HFO) spray finesse. As known, the interaction between droplets and cross flow should be considered carefully in many different industrial applications such as the process burners and gas turbine combustors. So, it would be so important to investigate the effect of injecting HFO into a crossflow more subtly. In this work, the effects of various flow and spray parameters on the droplet breakup and dispersion parameters are investigated numerically using the finite-volume-element method. The numerical method consists of a number of different models to predict the droplets breakup and their dispersion into a cross flow including the spray-turbulence interaction one. An Eulerian–Lagrangian approach, which suitably models the interaction between the droplets and turbulence, and also models the droplets secondary breakup is used to investigate the interactions between the flow and the droplet behaviors. After validating the computational method via comparing them with the data provided by the past researches, four test cases with varying swirl number, air axial velocity, droplet size, and fuel injection velocity are examined to find out the effects of preceding parameters on some spray characteristics including the droplets path, sauter mean diameter (SMD), and dispersed phase mass concentration. The results show that the droplets inertia and the flow velocity magnitude have significant effects on spray characteristics. As the droplets become more massive, the deflection of spray in flow direction becomes less. Also, increasing of flow velocity causes more deflection for sprays with the same droplet sizes.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Hashem Nowruzi ◽  
Parviz Ghadimi ◽  
Mehdi Yousefifard

In the present study, nonreacting and nonevaporating spray characteristics of heavy fuel oil (HFO)/n-butanol blends are numerically investigated under two different high pressure injections in medium speed engines. An Eulerian-Lagrangian multiphase scheme is used to simulate blend of C14H30as HFO and 0%, 10%, 15%, and 20% by volume of n-butanol. OpenFOAM CFD toolbox is modified and implemented to study the effect of different blends of HFO/n-butanol on the spray characteristics at 600 and 1000 bar. To validate the presented simulations, current numerical results are compared against existing experimental data and good compliance is achieved. Based on the numerical findings, addition of n-butanol to HFO increases the particles volume in parcels at 600 bar. It was also found that blend fuels increase the number of spray particles and the average velocity of spray compared to pure HFO. Moreover, under injection pressure of 1000 bar, HFO/n-butanol blends compared to pure HFO fuel decrease particles volume in parcels of spray. Another influence of HFO/n-butanol blends is the decrease in average of particles diameter in parcels. Meanwhile, the effect of HFO/n-butanol on spray length is proved to be negligible. Finally, it can be concluded that higher injection pressure improves the spray efficiency.


2021 ◽  
Vol 10 (3) ◽  
pp. 597-605
Author(s):  
Moalla Alaa ◽  
Soulayman Soulayman ◽  
Taan Abdelkarim ◽  
Zgheib Walid

In order to produce a water/heavy fuel oil emulsion (W/HFO) with different water contents to cover the daily needs of a fire tube boiler or a water tube boiler, a special homogenizer is designed, constructed and tested. The produced emulsion is characterized and compared with the pure HFO properties. It is found experimentally in fire tube boiler that, the use of W/HFO emulsion with 8% of water content (W0.08/HFO0.92) instead of HFO leads to a saving rate of 13.56% in HFO. For explaining the obtained energy saving the term “equivalent heat value (EHV) of the W/HFO emulsions”, defined as the ratio of the W/HFO emulsion net calorific value to the HFO content in the emulsion, is used. Based on direct measurements, provided in this work, it was found that the equivalent heat value (EHV) increases with the water content in the water/heavy fuel oil (W/HFO). It reaches 1.06 times of HFO net calorific value at water content of 22.24%. The obtained, in the present work, experimental results demonstrate the dependence of the emulsion EHV on its water content. These results are in agreement with the results of other authors. Therefore, the contribution of water droplets in the emulsion combustion is verified. It is found experimentally that, the emitted CO, SO2  and H2S gases from the fire tube boiler chimney decreases by 5.66%. 3.99% and 48.77% respectively in the case of (W0.08/HFO0.92) emulsion use instead of HFO.


Author(s):  
Stavros Fostiropoulos ◽  
George Strotos ◽  
Nikolaos Nikolopoulos ◽  
Manolis Gavaises

Author(s):  
Laís A. Nascimento ◽  
Marilda N. Carvalho ◽  
Mohand Benachour ◽  
Valdemir A. Santos ◽  
Leonie A. Sarubbo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document