Low level occupational exposure to styrene: Its effects on DNA damage and DNA repair

2011 ◽  
Vol 214 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Sirilak Wongvijitsuk ◽  
Panida Navasumrit ◽  
Udomratana Vattanasit ◽  
Varabhorn Parnlob ◽  
Mathuros Ruchirawat
1998 ◽  
Vol 45 (2) ◽  
pp. 605-610 ◽  
Author(s):  
J Palus ◽  
E Dziubałtowska ◽  
K Rydzyński

Single-strand breaks (SSB) and DNA repair were detected in peripheral lymphocytes derived from workers of a furniture factory in a non-polluted region of Poland. The workers were exposed to wood dust (n = 19), or to the dust and varnishes or lacquers together (n = 5). Four groups were studied simultaneously: (a) exposed workers smokers of cigarettes (n = 14), (b) nonexposed smokers--control (n = 14), (c) exposed workers' nonsmokers (n = 14), (d) exposed nonsmokers (n = 10). In exposed workers DNA SSB and DNA repair were statistically significantly increased. DNA SSB was clearly higher in the smoking workers than in the smoking controls. Cigarette smoking itself has produced no evident increase in the frequency of DNA SSB in the control group. Occupational exposure had a significant effect on DNA repair in non stimulated lymphocytes both in smoking and nonsmoking workers.


2019 ◽  
Vol 2 (02) ◽  
pp. 80-89
Author(s):  
Blanca De Unamuno Bustos ◽  
Natalia Chaparr´´o Aguilera ◽  
Inmaculada Azorín García ◽  
Anaid Calle Andrino ◽  
Margarita Llavador Ros ◽  
...  

Actinic keratosis (AKs) are part of the cancerization field, a region adjacent to AKs containing subclinical and histologically abnormal epidermal tissue due to Ultraviolet (UV)-induced DNA damage. The photoproducts as consequence of DNA damage induced by UV are mainly cyclobutane pyrimidine dimers (CPDs). Fernblock® demonstrated in previous studies significant reduction of the number of CPDs induced by UV radiation. Photolyases are a specific group of enzymes that remove the major UV-induced DNA lesions by a mechanism called photo-reactivation. A monocentric, prospective, controlled, and double blind interventional study was performed to evaluate the effect of a new medical device (NMD) containing a DNA-repair enzyme complex (photolyases, endonucleases and glycosilases), a combination of UV-filters, and Fernblock® in the treatment of the cancerization field in 30 AK patients after photodynamic therapy. Patients were randomized into two groups: patients receiving a standard sunscreen (SS) andpatients receiving the NMD. Clinical, dermoscopic, reflectance confocal microscopy (RCM) and histological evaluations were performed. An increase of AKs was noted in all groups after three months of PDT without significant differences between them (p=0.476). A significant increase in the number of AKs was observed in SS group after six (p=0.026) and twelve months of PDT (p=0.038); however, this increase did not reach statistical significance in the NMD group. Regarding RCM evaluation, honeycomb pattern assessment after twelve months of PDT showed significant differences in the extension and grade of the atypia in the NMD group compared to SS group (p=0.030 and p=0.026, respectively). Concerning histopathological evaluation, keratinocyte atypia grade improved from baseline to six months after PDT in all the groups, with no statistically significant differences between the groups. Twelve months after PDT, p53 expression was significantly lower in the NMD group compared to SS group (p=0.028). The product was well-tolerated, with no serious adverse events reported. Our results provide evidence of the utility of this NMD in the improvement of the cancerization field and in the prevention of the development of new AKs.  


2021 ◽  
Author(s):  
Ann Nakashima ◽  
Oshin Vartanian ◽  
Shawn G Rhind ◽  
Kristen King ◽  
Catherine Tenn ◽  
...  

ABSTRACT Introduction Recently, there has been increasing concern about the adverse health effects of long-term occupational exposure to low-level blast in military personnel. Occupational blast exposure occurs routinely in garrison through use of armaments and controlled blast detonations. In the current study, we focused on a population of breaching instructors and range staff. Breaching is a tactical technique that is used to gain entry into closed spaces, often through the use of explosives. Materials and Methods Initial measurements of blast overpressure collected during breaching courses found that up to 10% of the blasts for range staff and up to 32% of the blasts for instructors exceeded the recommended 3 psi exposure limit. Using a cross-sectional design, we used tests of balance, ataxia, and hearing to compare a sample of breachers (n = 19) to age-and sex-matched military controls (n = 19). Results There were no significant differences between the two groups on the balance and ataxia tests, although the average scores of both groups were lower than would be expected in a normative population. The prevalence of hearing loss was low in the breacher group (4 of 19), and hearing thresholds were not significantly different from the controls. However, the prevalence of self-reported tinnitus was significantly higher in the breacher group (12 of 19) compared with the controls (4 of 19), and all breachers who were identified as having hearing loss also reported tinnitus. Conclusions Our results suggest that basic tests of balance, ataxia, and hearing on their own were not sensitive to the effects of long-term occupational exposure to low-level blast. Some of the blast exposure levels exceeded limits, and there was a significant association of exposure with tinnitus. Future studies should supplement with additional information including exposure history and functional hearing assessments. These findings should be considered in the design of future acute and longitudinal studies of low-level blast exposure.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1375-1387
Author(s):  
Emmanuelle M D Martini ◽  
Scott Keeney ◽  
Mary Ann Osley

Abstract To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Δ and rad52Δ mutants but not in rad6Δ or rad18Δ mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Δ) or error-free (rad30Δ) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Δ mutation. When combined with a ubc13Δ mutation, which is also epistatic with rad5Δ, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 174
Author(s):  
Shannon Weeks Santos ◽  
Jérôme Cachot ◽  
Bettie Cormier ◽  
Nicolas Mazzella ◽  
Pierre-Yves Gourves ◽  
...  

The aim of this study was to analyze the impact of three concentrations of a pesticide mixture on the first development stages of rainbow trout (Oncorhynchus mykiss). The mixture was made up of three commonly used pesticides in viticulture: glyphosate (GLY), chlorpyrifos (CPF) and copper sulfate (Cu). Eyed stage embryos were exposed for 3 weeks to three concentrations of the pesticide mixture. Lethal and sub-lethal effects were assessed through a number of phenotypic and molecular endpoints including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage (Comet assay), lipid peroxidation (TBARS), protein carbonyl content and gene expression. Ten target genes involved in antioxidant defenses, DNA repair, mitochondrial metabolism and apoptosis were analyzed using real-time RT-qPCR. No significant increase of mortality, half-hatch, growth defects, TBARS and protein carbonyl contents were observed whatever the pesticide mixture concentration. In contrast, DNA damage and swimming activity were significantly more elevated at the highest pesticide mixture concentration. Gene transcription was up-regulated for genes involved in detoxification (gst and mt1), DNA repair (ogg1), mitochondrial metabolism (cox1 and 12S), and cholinergic system (ache). This study highlighted the induction of adaptive molecular and behavioral responses of rainbow trout larvae when exposed to environmentally realistic concentrations of a mixture of pesticides.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fa-Hui Sun ◽  
Peng Zhao ◽  
Nan Zhang ◽  
Lu-Lu Kong ◽  
Catherine C. L. Wong ◽  
...  

AbstractUpon binding to DNA breaks, poly(ADP-ribose) polymerase 1 (PARP1) ADP-ribosylates itself and other factors to initiate DNA repair. Serine is the major residue for ADP-ribosylation upon DNA damage, which strictly depends on HPF1. Here, we report the crystal structures of human HPF1/PARP1-CAT ΔHD complex at 1.98 Å resolution, and mouse and human HPF1 at 1.71 Å and 1.57 Å resolution, respectively. Our structures and mutagenesis data confirm that the structural insights obtained in a recent HPF1/PARP2 study by Suskiewicz et al. apply to PARP1. Moreover, we quantitatively characterize the key residues necessary for HPF1/PARP1 binding. Our data show that through salt-bridging to Glu284/Asp286, Arg239 positions Glu284 to catalyze serine ADP-ribosylation, maintains the local conformation of HPF1 to limit PARP1 automodification, and facilitates HPF1/PARP1 binding by neutralizing the negative charge of Glu284. These findings, along with the high-resolution structural data, may facilitate drug discovery targeting PARP1.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2073
Author(s):  
Beate Köberle ◽  
Sarah Schoch

Cisplatin is one of the most commonly used drugs for the treatment of various solid neoplasms, including testicular, lung, ovarian, head and neck, and bladder cancers. Unfortunately, the therapeutic efficacy of cisplatin against colorectal cancer is poor. Various mechanisms appear to contribute to cisplatin resistance in cancer cells, including reduced drug accumulation, enhanced drug detoxification, modulation of DNA repair mechanisms, and finally alterations in cisplatin DNA damage signaling preventing apoptosis in cancer cells. Regarding colorectal cancer, defects in mismatch repair and altered p53-mediated DNA damage signaling are the main factors controlling the resistance phenotype. In particular, p53 inactivation appears to be associated with chemoresistance and poor prognosis. To overcome resistance in cancers, several strategies can be envisaged. Improved cisplatin analogues, which retain activity in resistant cancer, might be applied. Targeting p53-mediated DNA damage signaling provides another therapeutic strategy to circumvent cisplatin resistance. This review provides an overview on the DNA repair pathways involved in the processing of cisplatin damage and will describe signal transduction from cisplatin DNA lesions, with special attention given to colorectal cancer cells. Furthermore, examples for improved platinum compounds and biochemical modulators of cisplatin DNA damage signaling will be presented in the context of colon cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document