scholarly journals Genotypic and phenotypic characterization of antimicrobial resistance in staphyloccoccus aureus strains isolated from wound infections in Mardin, Southeastern Turkey

2016 ◽  
Vol 45 ◽  
pp. 83
Author(s):  
C. Demir ◽  
M. Demirci ◽  
A. Yiğin ◽  
H. Bahar Tokman
mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Adam L. Bailey ◽  
Robert F. Potter ◽  
Meghan A. Wallace ◽  
Caitlin Johnson ◽  
Gautam Dantas ◽  
...  

ABSTRACT The objectives of this study were to perform genomic and phenotypic characterization of antimicrobial resistance in Neisseria gonorrhoeae isolates recovered from urine samples from patients in St. Louis, MO, USA. Sixty-four clinical isolates were banked over a 2-year period and subjected to antimicrobial susceptibility testing (AST) by Kirby-Bauer disk diffusion (penicillin, tetracycline, cefuroxime, and ciprofloxacin) and gradient diffusion (tetracycline, doxycycline, azithromycin, ceftriaxone, cefixime, ciprofloxacin, gemifloxacin, and delafloxacin). The medical records for the patients were evaluated to determine the demographics, location, and prescribed treatment regimen. Isolate draft genomes were assembled from Illumina shotgun sequencing data, and resistance determinants were identified by ResFinder and PointFinder. Of the 64 isolates, 97% were nonsusceptible to penicillin, with resistant isolates all containing the blaTEM-1b gene; 78 and 81% of isolates were nonsusceptible to tetracycline and doxycycline, respectively, with resistant isolates all containing the tet(M) gene. One isolate was classified as non-wild-type to azithromycin, and all isolates were susceptible to ceftriaxone; 89% of patients received this combination of drugs as first-line therapy. Six percent of isolates were resistant to ciprofloxacin, with most resistant isolates containing multiple gyrA and parC mutations. Correlation between disk and gradient diffusion AST devices was high for tetracycline and ciprofloxacin (R2 > 99% for both). The rates of N. gonorrhoeae antibiotic resistance in St. Louis are comparable to current rates reported nationally, except ciprofloxacin resistance was less common in our cohort. Strong associations between specific genetic markers and phenotypic susceptibility testing hold promise for the utility of genotype-based diagnostic assays to guide directed antibiotic therapy. IMPORTANCE Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is most commonly diagnosed using a DNA-based detection method that does not require growth and isolation of N. gonorrhoeae in the laboratory. This is problematic because the rates of antibiotic resistance in N. gonorrhoeae are increasing, but without isolating the organism in the clinical laboratory, antibiotic susceptibility testing cannot be performed on strains recovered from clinical specimens. We observed an increase in the frequency of urine cultures growing N. gonorrhoeae after we implemented a total laboratory automation system for culture in our clinical laboratory. Here, we report on the rates of resistance to multiple historically used, first-line, and potential future-use antibiotics for 64 N. gonorrhoeae isolates. We found that the rates of antibiotic resistance in our isolates were comparable to national rates. Additionally, resistance to specific antibiotics correlated closely with the presence of genetic resistance genes, suggesting that DNA-based tests could also be designed to guide antibiotic therapy for treating gonorrhea.


Author(s):  
Gamal Wareth ◽  
Mathias W. Pletz ◽  
Heinrich Neubauer ◽  
Lisa D. Sprague

Acinetobacter (A.) baumannii is one of the major nosocomial pathogens worldwide. It is associated with bloodstream infection, pneumonia, meningitis, urinary tract, soft tissue, and wound infections. Several factors contribute to its survival and spread as a nosocomial pathogen, and motility is often associated with the virulence, fitness, and tenacity of A. baumannii on surfaces. In the present study, the correlation between the presence of genes encoding for fimbrial protein PilA and periplasmic protease AlgW and motility was investigated in 87 clinical and non-clinical A. baumannii isolates from Germany. A. baumannii exhibited robust swimming, swarming, and twitching movement based on the percentage of agar in the medium, as well as the time and temperature of incubation. The swarm motility medium utilizing 2% agar with tetrazolium salts provided an efficient assay for the phenotypic characterization of A. baumannii and it was more efficient than the classical motility assays in terms of time, visibility, and biosafety. The presence of the pilA gene increased motility of A. baumannii but was not required for motility. The algW gene was found in 18 strains obtained from milk, all of them with proven phenotypic motility. The rapid detection of motility is essential to evaluate the virulence and fitness of A. baumannii. Further studies on the level of genome, transcriptome and proteome are needed to investigate the secrets behind different movement paths in each strain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carla L. Schwan ◽  
Sara Lomonaco ◽  
Leonardo M. Bastos ◽  
Peter W. Cook ◽  
Joshua Maher ◽  
...  

Non-typhoidal Salmonella enterica is a pathogen of global importance, particularly in low and middle-income countries (LMICs). The presence of antimicrobial resistant (AMR) strains in market environments poses a serious health threat to consumers. In this study we identified and characterized the genotypic and phenotypic AMR profiles of 81 environmental S. enterica strains isolated from samples from informal markets in Cambodia in 2018–2019. AMR genotypes were retrieved from the NCBI Pathogen Detection website (https://www.ncbi.nlm.nih.gov/pathogens/) and using ResFinder (https://cge.cbs.dtu.dk/services/) Salmonella pathogenicity islands (SPIs) were identified with SPIFinder (https://cge.cbs.dtu.dk/services/). Susceptibility testing was performed by broth microdilution according to the Clinical and Laboratory Standards Institute (CLSI) standard guidelines M100-S22 using the National Antimicrobial Resistance Monitoring System (NARMS) Sensititre Gram Negative plate. A total of 17 unique AMR genes were detected in 53% (43/81) of the isolates, including those encoding tetracycline, beta-lactam, sulfonamide, quinolone, aminoglycoside, phenicol, and trimethoprim resistance. A total of 10 SPIs (SPI-1, 3–5, 8, 9, 12–14, and centisome 63 [C63PI]) were detected in 59 isolates. C63PI, an iron transport system in SPI-1, was observed in 56% of the isolates (n = 46). SPI-1, SPI-4, and SPI-9 were present in 13, 2, and 5% of the isolates, respectively. The most common phenotypic resistances were observed to tetracycline (47%; n = 38), ampicillin (37%; n = 30), streptomycin (20%; n = 16), chloramphenicol (17%; n = 14), and trimethoprim-sulfamethoxazole (16%; n = 13). This study contributes to understanding the AMR genes present in S. enterica isolates from informal markets in Cambodia, as well as support domestic epidemiological investigations of multidrug resistance (MDR) profiles.


2009 ◽  
Vol 47 (01) ◽  
Author(s):  
K Hochrath ◽  
S Hillebrandt ◽  
F Lammert ◽  
B Rathkolb ◽  
H Fuchs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document