Fast dissolving cyclodextrin complex of piroxicam in solid dispersion Part I: Influence of β-CD and HPβ-CD on the dissolution rate of piroxicam

2015 ◽  
Vol 478 (2) ◽  
pp. 625-632 ◽  
Author(s):  
F. Bouchal ◽  
M. Skiba ◽  
N. Chaffai ◽  
F. Hallouard ◽  
S. Fatmi ◽  
...  
Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas I

Repaglinide is a pharmaceutical drug used for the treatment of type II diabetes mellitus, it is characterized with poor solubility which limits its absorption and dissolution rate and delays onset of action. In the present study, immediate release solid dispersion of repaglinide was formulated by solvent evaporation technique. Repaglinide solid dispersions were prepared using PEG 8000, Pluronic F 127 and Gelucire 44/14 by solvent evaporation method. A 3-factor, 3-level central composite design employed to study the effect of each independent variable on dependent variables. FTIR studies revealed that no drug excipient interaction takes place. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of repaglinide has been converted into an amorphous form from crystalline within the solid dispersion formulation. The correlation coefficient showed that the release profile followed Higuchi model anomalous behavior and hence release mechanism was indicative of diffusion. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of repaglinide.


2012 ◽  
Vol 4 (2) ◽  
pp. 58-62
Author(s):  
Aparajita Malakar ◽  
Bishwajit Bokshi ◽  
Utpal Kumar Karmakar

The aim of the present study was to increase the solubility of a poorly water soluble BCS class II drug, valsartan. Liquisolid technology and solid dispersion by kneading method were techniques used to improve the solubility of the drug by using non-volatile solvents and some hydrophilic carriers. Liquisolid compacts were prepared by dissolving the drug in suitable non volatile solvents. The various non volatile solvents used were PG, PEG, and glycerine. The carrier coating materials play an important role in improving the solubility of the drug. The dissolution rate of the drug was increased by using propylene glycol as non-volatile solvent at 20:1 ratio of carrier to coating material. Solid dispersion by kneading method were another attempt to improve solubility the various carrier materials used were PVP K 30, PEG 6000 and mannitol, these carriers are used in various ratios to improve its solubility. The dissolution rate of drug using solid dispersion kneading method with mannitol was increased at 1:3 ratio. The DSC and FTIR studies revealed no drug excipients interactions, whereas XRD revealed the reduced crystalinity of drug, which showed enhanced solubility. From the results it was concluded that the liquisolid compacts enhanced the solubility of valsartan in comparison to traditional solid dispersion method.DOI: http://dx.doi.org/10.3329/sjps.v4i2.10441  S. J. Pharm. Sci. 4(2) 2011: 58-62


2013 ◽  
Vol 43 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Pranav V. Patel ◽  
Shital S. Panchal ◽  
Tejal A. Mehta

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Jong-Hwa Lee ◽  
Hyeong Sik Jeong ◽  
Jong-Woo Jeong ◽  
Tae-Sung Koo ◽  
Do-Kyun Kim ◽  
...  

Rivaroxaban (RXB), a novel oral anticoagulant that directly inhibits factor Xa, is a poorly soluble drug belonging to Biopharmaceutics Classification System (BCS) class II. In this study, a hot-melt extruded amorphous solid dispersion (HME-ASD) containing RXB is prepared by changing the drug:polymer ratio (Polyvinylpyrrolidione-vinyl acetate 64, 1:1–1:4) and barrel temperature (200–240 °C), fixed at 20% of Cremophor® RH 40 and 15 rpm of the screw speed, using the hot-melt extruding technique. This study evaluates the solubility, dissolution behavior, and bioavailability for application to oral drug delivery and optimizes the formulation of rivaroxaban amorphous solid dispersion (RXB-ASD). Based on a central composite design, optimized RXB-ASD (PVP VA 64 ratio 1:4.1, barrel temperature 216.1 °C, Cremophor® RH 40 20%, screw speed 15 rpm) showed satisfactory results for dependent variables. An in vitro drug dissolution study exhibited relatively high dissolution in four media and achieved around an 80% cumulative drug release in 120 min. Optimized RXB-ASD was stable under the accelerated condition for three months without a change in crystallinity and the dissolution rate. A pharmacokinetic study of RXB-ASD in rats showed that the absorption was markedly increased in terms of rate and amount, i.e., the systemic exposure values, compared to raw RXB powder. These results showed the application of quality by design (QbD) in the formulation development of hot-melt extruded RXB-ASD, which can be used as an oral drug delivery system by increasing the dissolution rate and bioavailability.


Author(s):  
Rahul Kumar ◽  
Sanjay Kumar ◽  
Pranava Chaudhari ◽  
Amit K. Thakur

Abstract Flufenamic acid (FFA) is a Biopharmaceutical Classification System- II (BCS-II) class drug with poor bioavailability and a lower dissolution rate. Particle size reduction is one of the conventional approaches to increase the dissolution rate and subsequently the bioavailability. The use of the liquid antisolvent method for particle size reduction of FFA was studied in this work. Ethanol and water were used as solvent and antisolvent, respectively. Experimental parameters such as solution concentration (10–40 mg/ml), flow rate (120–480 ml/h), temperature (298–328 K) and stirring speed (200–800 rpm) were investigated. Furthermore, the solid dispersion of FFA was prepared with polyvinylpyrrolidone K-30 (PVP K-30) with different weight ratios (1:1, 1:2, 1:3 and 1:4) and samples were characterized using SEM, FTIR and XRD techniques. The experimental investigation revealed that higher values of concentration, injection rate, stirring speed, along with lower temperature favored the formation of fine particles. SEM analysis revealed that the morphology of raw FFA changed from rock-like to rectangular-like after liquid antisolvent recrystallization. FTIR analysis validated the presence of hydrogen bonding between FFA and PVP in solid dispersion. XRD analysis showed no significant change in the crystallinity of the processed FFA.


2015 ◽  
Vol 5 (2) ◽  
pp. 1463-1472 ◽  
Author(s):  
Shete A.S . ◽  
Yadav V.B . ◽  
Sakhare S.S . ◽  
Patil S.B . ◽  
Sajane S.J . ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
pp. 86-98
Author(s):  
Noval Noval ◽  
◽  
Rosyifa Rosyifa ◽  

Diclofenac sodium is included in class II category based on biopharmaceutics classification system (BCS), sodium diclofenac has low solubility and high permeability. Low solubility will affect absorption of drugs in body because rate of dissolution will decrease. PVP K30 is inert carrier that dissolves easily in water and can affect solubility of an active drug substance. To know solid dispersion system increasing dissolution rate of sodium diclofenac by adding variations concentration of PVP K30. Solid dispersion uses solvent method with variations concentration of PVP K30 1:3, 1:5, 1:7 and 1:9. Test physical properties of solid dispersions using a moisture test and compressibility. Solid dispersion dissolution test using type 2 dissolutions test and determination of concentration using UV-VIS spectrophotometry. Test results were analyzed using One Way ANOVA and continued test. Solid dispersion has a good physical whit moisture percentage not >5% and compressibility not >20%. Solid dispersion of sodium diclofenac with addition of PVP K30 can increase dissolution rate compared to pure sodium diclofenac (p<0,05) with highest at ratio 1:7. Each comparison has significant difference (p<0,05) expect in ratio 1:9. Solid dispersion of sodium diclofenac with PVP K30 can increase dissolution rate of pure sodium diclofenac.


Author(s):  
Sanjoy Kumar Das

Improving oral bioavailability of drugs those given as solid dosage forms remains a challenge for the formulation scientists due to solubility problems. The dissolution rate could be the rate-limiting process in the absorption of a drug from a solid dosage form of relatively insoluble drugs. Therefore increase in dissolution of poorly soluble drugs by solid dispersion technique presents a challenge to the formulation scientists. Solid dispersion techniques have attracted considerable interest of improving the dissolution rate of highly lipophilic drugs thereby improving their bioavailability by reducing drug particle size, improving wettability and forming amorphous particles. The term solid dispersion refers to a group of solid products consisting of at least two different components, generally a hydrophilic inert carrier or matrix and a hydrophobic drug. This article reviews historical background of solid dispersion technology, limitations, classification, and various preparation techniques with its advantages and disadvantages. This review also discusses the recent advances in the field of solid dispersion technology. Based on the existing results and authors’ reflection, this review give rise to reasoning and suggested choices of carrier or matrix and solid dispersion procedure.


Sign in / Sign up

Export Citation Format

Share Document