Oligonucleotide-conjugated nanoparticles for targeted drug delivery via scavenger receptors class A: An in vitro assessment for proof-of-concept

2017 ◽  
Vol 532 (1) ◽  
pp. 647-655 ◽  
Author(s):  
Ho Yin Li ◽  
Zhong Chen ◽  
Lok Wai Ho ◽  
Pui Shan Chan ◽  
Qingqing Li ◽  
...  
2013 ◽  
Vol 5 (15) ◽  
pp. 6909-6914 ◽  
Author(s):  
Guodong Liu ◽  
He Shen ◽  
Jinning Mao ◽  
Liming Zhang ◽  
Zhen Jiang ◽  
...  

2021 ◽  
Vol 104 ◽  
pp. 93-105
Author(s):  
Sikhumbuzo Charles Kunene ◽  
Kuen-Song Lin ◽  
Meng-Tzu Weng ◽  
Maria Janina Carrera Espinoza ◽  
Chun-Ming Wu

2021 ◽  
Vol 28 (3) ◽  
pp. 359-359
Author(s):  
Hongfei Liu ◽  
Jie Zhu ◽  
Pengyue Bao ◽  
Yueping Ding ◽  
Jiapeng Wang ◽  
...  

The authors are regretful for submitting and approving the publication of incorrect Figure 4 in this article. Below is the corrected version along with the revised caption. The electronic version of the article has already been corrected.


2018 ◽  
Vol 03 (02) ◽  
pp. 1840001 ◽  
Author(s):  
Fraser Stewart ◽  
Antonella Verbeni ◽  
Yongqiang Qiu ◽  
Ben F. Cox ◽  
Jan Vorstius ◽  
...  

The prevalence of gastrointestinal (GI) diseases such as Crohn’s disease, which is chronic and incurable, are increasing worldwide. Treatment often involves potent drugs with unwanted side effects. The technological–pharmacological combination of capsule endoscopy with ultrasound-mediated targeted drug delivery (UmTDD) described in this paper carries new potential for treatment of these diseases throughout the GI tract. We describe a proof-of-concept UmTDD capsule and present preliminary results to demonstrate its promise as an autonomous tool to treat GI diseases.


2021 ◽  
Author(s):  
Chen Xin ◽  
Dongdong Jin ◽  
Yanlei Hu ◽  
Liang Yang ◽  
Rui Li ◽  
...  

Abstract Microrobots have attracted great attentions due to their wide applications in microobjects manipulation and targeted drug delivery. To realize more complex micro/nano cargos manipulation (e.g., encapsulation and release) in biological applications, endowing microrobots with shapes adaptability with the environment is highly desirable. Here, designable shape-morphing microrobots (SMMRs) have been developed by programmatically encoding different expansion rate in a pH-responsive hydrogel. Combined with magnetic propelling, the shape-morphing microcrab (SMMC) is capable of performing targeted microparticle delivery, including gripping, transporting, and releasing through claws morphing. As a proof-of-concept demonstration, the shape-morphing microfish (SMMF) is designed to encapsulate drug (doxorubicin (DOX)) by closing mouth in phosphate buffer saline (PBS, pH~7.4) and release them by opening mouth in slightly acid solution (pH<7), which realize localized Hela cells treatment in an artificial vascular network. These SMMRs with powerful shape morphing capabilities and remote motion controllability provide new platforms for complex microcargos operation and on-demand drug release.


2013 ◽  
Vol 39 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Dana Gourevich ◽  
Yoni Hertzberg ◽  
Alexander Volovick ◽  
Yaron Shafran ◽  
Gil Navon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document