scholarly journals A Prototype Therapeutic Capsule Endoscope for Ultrasound-Mediated Targeted Drug Delivery

2018 ◽  
Vol 03 (02) ◽  
pp. 1840001 ◽  
Author(s):  
Fraser Stewart ◽  
Antonella Verbeni ◽  
Yongqiang Qiu ◽  
Ben F. Cox ◽  
Jan Vorstius ◽  
...  

The prevalence of gastrointestinal (GI) diseases such as Crohn’s disease, which is chronic and incurable, are increasing worldwide. Treatment often involves potent drugs with unwanted side effects. The technological–pharmacological combination of capsule endoscopy with ultrasound-mediated targeted drug delivery (UmTDD) described in this paper carries new potential for treatment of these diseases throughout the GI tract. We describe a proof-of-concept UmTDD capsule and present preliminary results to demonstrate its promise as an autonomous tool to treat GI diseases.

2021 ◽  
Author(s):  
Chen Xin ◽  
Dongdong Jin ◽  
Yanlei Hu ◽  
Liang Yang ◽  
Rui Li ◽  
...  

Abstract Microrobots have attracted great attentions due to their wide applications in microobjects manipulation and targeted drug delivery. To realize more complex micro/nano cargos manipulation (e.g., encapsulation and release) in biological applications, endowing microrobots with shapes adaptability with the environment is highly desirable. Here, designable shape-morphing microrobots (SMMRs) have been developed by programmatically encoding different expansion rate in a pH-responsive hydrogel. Combined with magnetic propelling, the shape-morphing microcrab (SMMC) is capable of performing targeted microparticle delivery, including gripping, transporting, and releasing through claws morphing. As a proof-of-concept demonstration, the shape-morphing microfish (SMMF) is designed to encapsulate drug (doxorubicin (DOX)) by closing mouth in phosphate buffer saline (PBS, pH~7.4) and release them by opening mouth in slightly acid solution (pH<7), which realize localized Hela cells treatment in an artificial vascular network. These SMMRs with powerful shape morphing capabilities and remote motion controllability provide new platforms for complex microcargos operation and on-demand drug release.


2019 ◽  
Vol 12 (2) ◽  
pp. 83-95 ◽  
Author(s):  
A. V. Kuroyedov ◽  
V. V. Brzhesky ◽  
E. A. Krinitsyna

Ocular targeted drug delivery is one of the most challenging tasks for pharmaceutical researchers and practical ophthalmologists. The possibilities of drug delivery to the eye are naturally determined by the anatomical structure of the eye and its physiological properties, which restrict the period when therapeutically required drug concentration could be maintained. Combined drug delivery schemes may, potentially, improve the patient’s acceptance of treatment, reduce side effects, increase efficacy, and eventually preserve vision.


Author(s):  
Shyam Prasad ◽  
Vidhu Aeri ◽  
Yashwant .

The conventional drug delivery system for colonic disease may leads to absorption of drug across biological membrane of gastrointestinal tract (GIT). The absorption of drug throughout GIT may leads to increase in dose and associated side effects. Colon targeted drug delivery (CTDD) is a method of delivering medication to a patient in a manner that increases concentration of the medication in colon relative to other part of GIT. The aim of CTDD is to prolong, localize, target and have protected drug interaction to diseased tissue. The present review deals with primary as well as recent approaches of delivery of drug to colon.


2021 ◽  
pp. 1-8
Author(s):  
Mohammad Hasan Kamel Attar Kar ◽  
Mohammad Yousefi

This computational work was performed to investigate drug delivery of 5-fluorouracil (FU) anti-cancer by assistance of an iron(Fe)-modified graphene (G) scaffold. The models were optimized to reach the minimized energy structures in both of singular and bimolecular models. Two models of FU@G complex were obtained including O2@G and O4@G by relaxation of FU through O2 and O4 atoms towards the Fe-atom region of G surface. The obtained results of energies indicated a higher stability and strength for the O2@G model in comparison with the O4@G model. The quantitative and qualitative features of electronic molecular orbitals indicated the investigated G surface could work as a carrier of FU by reducing the unwanted side effects and also playing the sensor role. As a final remark of this work, the investigated G model could be proposed for employing in the targeted drug delivery of FU in both of carrier and sensor agents.


Author(s):  
Diksha Sharma ◽  
Abhishek Sharma

  The drug delivery system has been advanced to release the drug according to the body requirement during the entire period of treatment and also for the delivery at the targeted site. Several novel drug delivery systems have emerged encompassing different route of administration to achieve controlled and targeted drug delivery, magnetic microsphere carrier being one of them. Magnetic microsphere is an alternative to traditional radiation methods. As the traditional radiation methods use highly penetrating radiation that is absorbed throughout the body and cause side effects hence its use is limited. Therefore, a safe and effective alternate is needed like magnetic microsphere. The excessive circulating drug particles are minimized by this delivery system. Moreover, the aim of specific targeting is to enhance the effectiveness of drug delivery and at the same time to lessen the toxicity and side effects. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microsphere are chitosan, dextran, etc. One of the most utilized magnetic microspheres is serum albumine whether from human or other suitable animals. Drug release from the albumin microsphere can be controlled by various stabilization procedures. Overall, the targeted magnetic microsphere is much valuable novel drug delivery system for what more work have to be done. By knowing the importance of all this, the present paper reviews the mechanism, preparation, and applications of magnetic microspheres. As the targeted drug delivery system implies selective and effective localization of drug into the target at therapeutic concentrations with limited access to non-target sites. Magnetic microspheres hold great promises for reaching the goal of controlled and site-specific drug delivery.


2022 ◽  
Vol 8 ◽  
Author(s):  
Lihong Gu ◽  
Feng Zhang ◽  
Jinhui Wu ◽  
Yuzheng Zhuge

Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.


2021 ◽  
Vol 2 (3) ◽  
pp. 626-647
Author(s):  
Yubia De Anda-Flores ◽  
Elizabeth Carvajal-Millan ◽  
Alma Campa-Mada ◽  
Jaime Lizardi-Mendoza ◽  
Agustin Rascon-Chu ◽  
...  

Polysaccharide biomaterials have gained significant importance in the manufacture of nanoparticles used in colon-targeted drug delivery systems. These systems are a form of non-invasive oral therapy used in the treatment of various diseases. To achieve successful colonic delivery, the chemical, enzymatic and mucoadhesive barriers within the gastrointestinal (GI) tract must be analyzed. This will allow for the nanomaterials to cross these barriers and reach the colon. This review provides information on the development of nanoparticles made from various polysaccharides, which can overcome multiple barriers along the GI tract and affect encapsulation efficiency, drug protection, and release mechanisms upon arrival in the colon. Also, there is information disclosed about the size of the nanoparticles that are usually involved in the mechanisms of diffusion through the barriers in the GI tract, which may influence early drug degradation and release in the digestive tract.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (11) ◽  
pp. 74-77
Author(s):  
A. S Patil ◽  
◽  
A. P. Gadad

In the present study temperature and pH responsive co-polymer chitosan-g-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) was synthesized, characterized and efficiently loaded with oxaliplatin. Nanoparticles were evaluated for their physicochemical properties. The drug loaded nanoparticles showed smooth and spherical morphology with loading efficiency and drug content of about 80.7% and 48.7%, respectively. The in vitro drug release was significantly higher at tumor extracellular pH and temperature when compared to physiological pH and temperature. In conclusion, the developed nanoparticulate system is an effective dual responsive targeted drug delivery system for oxaliplatin with low toxic side effects.


Sign in / Sign up

Export Citation Format

Share Document