Obtaining optimum creep lifetime of Al 7075-T6 rotating pressurized vessel based on the experimental data, using reference stress method (RSM)

Author(s):  
Fereshteh Seraj ◽  
Ladan Fadaie-Vash ◽  
Farid Vakili-Tahami ◽  
Mohammad Reza Adibeig
Author(s):  
Renaud Bourga ◽  
Bin Wang ◽  
Philippa Moore ◽  
Yin Jin Janin

One of the ways to aid the decision whether or not to live with defects in pressurised components is through the demonstration of Leak-Before-Break (LBB). In this paper, three of the main solutions to carry out the LBB assessment, namely Stress Intensity Factor (SIF), Reference Stress (RS) and Crack Opening Area (COA) have been evaluated and compared for both BS 7910 and API 579/ASME FFS-1 standards. Differences with respect to the choice of solutions and boundary conditions are illustrated and discussed. The same applied loads and material properties have been used when applying each procedure. Different geometries for potential pressurised components which are of interest with regards to LBB have been considered for each solution. Focus is made on cylinders where axially and circumferentially oriented through-wall and surface cracks were analysed. While SIF solutions produce similar results for both standards, reference stress solutions show greater differences in the results. However, in LBB assessments it is the reference stress solution which is more relevant, since most LBB assessments pre-suppose the material to be ductile. In terms of COA, solutions are not given exactly equivalent, however they seem to agree well within the common range of applicability. Differences in the assessment route between the standards is also discussed. Experimental data from literature has also been compared to the different standard predictions, to illustrate the accuracy of the solutions for axially oriented surface cracks. The ability of solutions to predict the boundary between leak and break is discussed, in relation to how this shows the level of conservatism.


Author(s):  
Afshin K. Motarjemi

Fracture assessment procedures such as BS 7910 and API 579 are formulated based on the Fracture Mechanics concept for assessing integrity of structures such as pipelines, pressure vessels, etc. In the current study those procedures are applied to through-wall and surface cracked pipe geometry under four-point bending. The predicted maximum tolerable applied loads are then compared with pipe full-scale fracture testing results published by Miura et al (2002). Other assessment schemes namely, GE/EPRI, Net-section plastic collapse, LBB.NRC and finally LBB.ENG2, as reported in the same publication are also included in the current paper for sake of comparison. The comparative study showed that BS 7910 and API 579 predict similar maximum tolerable load for through-wall pipes but different value for surface-cracked pipes. Difference in predictions for the latter geometry is owing to the use of different stress intensity factor/reference stress solution by BS 7910 than API 579. However, both procedures provided conservative results compared with the experimental data as well as other engineering routes mentioned in Miura et al (2002).


2016 ◽  
Vol 685 ◽  
pp. 162-166 ◽  
Author(s):  
Alexander Pesin ◽  
Alexey Korchunov ◽  
D.O. Pustovoytov

The paper gives a mathematical model of grain evolution and dislocation density during asymmetric cold rolling of aluminum alloy 7075 in an SPD mode. Correlations between the effect of equivalent and shear strain on Al 7075 structure are obtained. An agreement of simulation results with experimental data is shown.


1983 ◽  
Vol 105 (2) ◽  
pp. 179-184
Author(s):  
D. L. Marriott

The paper describes a technique for estimating creep deformation from the results of short-term proof tests. The method relies on the concept of a reference stress which is representative of the general stress level in the component. It is shown that the method provides an upper, and therefore safe, bound on creep deformation. Application to a complex piping component is used to illustrate the procedure and some of the practical problems of interpreting the experimental data. Finally, an attempt is made to relate the reference stress method to tentative design procedures in Code Case N.47 of the ASME III Code.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Author(s):  
C. C. Ahn ◽  
D. H. Pearson ◽  
P. Rez ◽  
B. Fultz

Previous experimental measurements of the total white line intensities from L2,3 energy loss spectra of 3d transition metals reported a linear dependence of the white line intensity on 3d occupancy. These results are inconsistent, however, with behavior inferred from relativistic one electron Dirac-Fock calculations, which show an initial increase followed by a decrease of total white line intensity across the 3d series. This inconsistency with experimental data is especially puzzling in light of work by Thole, et al., which successfully calculates x-ray absorption spectra of the lanthanide M4,5 white lines by employing a less rigorous Hartree-Fock calculation with relativistic corrections based on the work of Cowan. When restricted to transitions allowed by dipole selection rules, the calculated spectra of the lanthanide M4,5 white lines show a decreasing intensity as a function of Z that was consistent with the available experimental data.Here we report the results of Dirac-Fock calculations of the L2,3 white lines of the 3d and 4d elements, and compare the results to the experimental work of Pearson et al. In a previous study, similar calculations helped to account for the non-statistical behavior of L3/L2 ratios of the 3d metals. We assumed that all metals had a single 4s electron. Because these calculations provide absolute transition probabilities, to compare the calculated white line intensities to the experimental data, we normalized the calculated intensities to the intensity of the continuum above the L3 edges. The continuum intensity was obtained by Hartree-Slater calculations, and the normalization factor for the white line intensities was the integrated intensity in an energy window of fixed width and position above the L3 edge of each element.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


1981 ◽  
Vol 20 (04) ◽  
pp. 207-212 ◽  
Author(s):  
J. Hermans ◽  
B. van Zomeren ◽  
J. W. Raatgever ◽  
P. J. Sterk ◽  
J. D. F. Habbema

By means of a case study the choice between several methods of discriminant analysis is presented. Experimental data of a two-groups problem with one or two variables is analysed. The different methods are compared according to posterior probabilities which can be computed for each subject and which are the basis of discriminant analysis. These posterior probabilities are analysed graphically as well as numerically.


Sign in / Sign up

Export Citation Format

Share Document