Improved mechanical properties of NbC-M2 high speed steel-based cemented carbide by addition of multi-walled carbon nanotubes

Author(s):  
Reza Esmaeilzadeh ◽  
Cyrus Zamani ◽  
Hendrik Reinhardt ◽  
Michael Dasbach ◽  
Norbert Hampp ◽  
...  
2009 ◽  
Vol 08 (01n02) ◽  
pp. 23-27 ◽  
Author(s):  
KWABENA A. NARH ◽  
AHMED-TIJANI AGWEDICHAM ◽  
LAILA J. JALLO ◽  
KYONG Y. RHEE ◽  
JI H. LEE

Composites of polyethylene oxide and carbon nanotubes were produced by first deagglomerating highly agglomerated multi-walled carbon nanotubes in water, using a high-intensity ultrasonic probe, and then mixing with a solution of the polymer using a high-speed mixer. The deagglomeration of the nanotubes was carried out at different amplitudes of the vibrating ultrasonic probe. Differential scanning calorimetry results show an increase in melting temperature with increase in amplitude of sonication. Also, tensile test results show improved mechanical properties, with increased degree of deagglomeration of the nanotubes. SEM images show that the extent of nanotubes dispersion in the polymer matrix correlates with the extent of deagglomeration.


Carbon ◽  
2007 ◽  
Vol 45 (11) ◽  
pp. 2311-2313 ◽  
Author(s):  
Qing-Ping Feng ◽  
Xu-Ming Xie ◽  
Yi-Tao Liu ◽  
Yan-Fang Gao ◽  
Xiao-Hao Wang ◽  
...  

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Seyed Ali Mirsalehi ◽  
Amir Ali Youzbashi ◽  
Amjad Sazgar

AbstractIn this study, epoxy hybrid nanocomposites reinforced by carbon fibers (CFs) were fabricated by a filament winding. To improve out-of-plane (transverse) mechanical properties, 0.5 and 1.0 Wt.% multi-walled carbon nanotubes (MWCNTs) were embedded into epoxy/CF composites. The MWCNTs were well dispersed into the epoxy resin without using any additives. The transverse mechanical properties of epoxy/MWCNT/CF hybrid nanocomposites were evaluated by the tensile test in the vertical direction to the CFs (90º tensile) and flexural tests. The fracture surfaces of composites were studied by scanning electron microscopy (SEM). The SEM observations showed that the bridging of the MWCNTs is one of the mechanisms of transverse mechanical properties enhancement in the epoxy/MWCNT/CF composites. The results of the 90º tensile test proved that the tensile strength and elongation at break of nanocomposite with 1.0 Wt.% MWCNTs improved up to 53% and 50% in comparison with epoxy/CF laminate composite, respectively. Furthermore, the flexural strength, secant modulus, and elongation of epoxy/1.0 Wt.% MWCNT/CF hybrid nanocomposite increased 15%, 7%, and 9% compared to epoxy/CF laminate composite, respectively.


2014 ◽  
Vol 879 ◽  
pp. 169-174
Author(s):  
R. Sauti ◽  
N.A. Wahab ◽  
M.A. Omar ◽  
I.N. Ahmad

This paper reports on the compatibility of waste rubber as binder for M2 High Speed Steel injection moulding. The feedstock was prepared at a powder loading of 65 vol.% using 22μm M2 High Speed Steel powder and the binders consisting of 55wt.% paraffin wax, 21wt.% polyethylene, 14wt.% waste rubber and 10wt.% stearic acid. The specimens were then sintered in vacuum and 95%N2/5%H2 atmosphere. The sintering in vacuum atmosphere occurred within a temperature range from1200°C to 1260°C, whilst the 95%N2/5%H2 atmosphere was carried out within a temperature range from 1220°C to 1300°C. The effects of the sintering atmosphere and temperature on the physical properties, mechanical properties and microstructure were investigated.


2017 ◽  
Vol 54 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Maria Adina Vulcan ◽  
Celina Damian ◽  
Paul Octavian Stanescu ◽  
Eugeniu Vasile ◽  
Razvan Petre ◽  
...  

This paper deals with the synthesis of polyurea and its use as polymer matrix for nanocomposites reinforced with multi-walled carbon nanotubes (MWCNT). Two types of materials were obtained during this research, the first cathegory uses the polyurea as matrix and the second one uses a mixture between epoxy resin and polyurea. The nanocomposites were characterized by Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM) and Tensile Tests .The elastomeric features of nanocomposites were highlighted by the results which showed low value of Tg. Also higher thermal stability with ~40oC compared with commercial products (M20) were observed, but lower mechanical properties compared to neat polyurea.


Sign in / Sign up

Export Citation Format

Share Document