A Combined Small Molecule and shRNA High-content Screen of Chromatin Modifiers Identifies an Acetyl-lysine Binding Protein as a Suppressor of the DNA Damage Response to Ionizing Radiation

Author(s):  
M.E. Pacold ◽  
E. Blake ◽  
S. Clarke ◽  
A. Fydrych ◽  
N. West ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Kerstin Felgentreff ◽  
Catharina Schuetz ◽  
Ulrich Baumann ◽  
Christian Klemann ◽  
Dorothee Viemann ◽  
...  

DNA damage occurs constantly in every cell triggered by endogenous processes of replication and metabolism, and external influences such as ionizing radiation and intercalating chemicals. Large sets of proteins are involved in sensing, stabilizing and repairing this damage including control of cell cycle and proliferation. Some of these factors are phosphorylated upon activation and can be used as biomarkers of DNA damage response (DDR) by flow and mass cytometry. Differential survival rates of lymphocyte subsets in response to DNA damage are well established, characterizing NK cells as most resistant and B cells as most sensitive to DNA damage. We investigated DDR to low dose gamma radiation (2Gy) in peripheral blood lymphocytes of 26 healthy donors and 3 patients with ataxia telangiectasia (AT) using mass cytometry. γH2AX, p-CHK2, p-ATM and p53 were analyzed as specific DDR biomarkers for functional readouts of DNA repair efficiency in combination with cell cycle and T, B and NK cell populations characterized by 20 surface markers. We identified significant differences in DDR among lymphocyte populations in healthy individuals. Whereas CD56+CD16+ NK cells showed a strong γH2AX response to low dose ionizing radiation, a reduced response rate could be observed in CD19+CD20+ B cells that was associated with reduced survival. Interestingly, γH2AX induction level correlated inversely with ATM-dependent p-CHK2 and p53 responses. Differential DDR could be further noticed in naïve compared to memory T and B cell subsets, characterized by reduced γH2AX, but increased p53 induction in naïve T cells. In contrast, DDR was abrogated in all lymphocyte populations of AT patients. Our results demonstrate differential DDR capacities in lymphocyte subsets that depend on maturation and correlate inversely with DNA damage-related survival. Importantly, DDR analysis of peripheral blood cells for diagnostic purposes should be stratified to lymphocyte subsets.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A944-A944
Author(s):  
Anand Kornepati ◽  
Clare Murray ◽  
Barbara Avalos ◽  
Cody Rogers ◽  
Kavya Ramkumar ◽  
...  

BackgroundTumor surface-expressed programmed death-ligand 1 (PD-L1) suppresses immunity when it engages programmed death-1 (PD-1) on anti-tumor immune cells in canonical PD-L1/PD-1.1 Non-canonical, tumour-intrinsic PD-L1 signals can mediate treatment resistance2–6 but mechanisms remain incompletely understood. Targeting non-canonical, cell-intrinsic PD-L1 signals, especially modulation of the DNA damage response (DDR), remains largely untapped.MethodsWe made PD-L1 knockout (PD-L1 KO) murine transplantable and human cell lines representing melanoma, bladder, and breast histologies. We used biochemical, genetic, and cell-biology techniques for mechanistic insights into tumor-intrinsic PD-L1 control of specific DDR and DNA repair pathways. We generated a novel inducible melanoma GEMM lacking PD-L1 only in melanocytes to corroborate DDR alterations observed in PD-L1 KO of established tumors.ResultsGenetic tumor PD-L1 depletion destabilized Chk2 and impaired ATM/Chk2, but not ATR/Chk1 DDR. PD-L1KO increased DNA damage (γH2AX) and impaired homologous recombination DNA repair (p-RPA32, BRCA1, RAD51 nuclear foci) and function (DR-GFP reporter). PD-L1 KO cells were significantly more sensitive versus controls to DDR inhibitors (DDRi) against ATR, Chk1, and PARP but not ATM in multiple human and mouse tumor models in vitro and in vivo in NSG mice. PD-1 independent, intracellular, not surface PD-L1 stabilized Chk2 protein with minimal Chek2 mRNA effect. Mechanistically, PD-L1 could directly complex with Chk2, protecting it from PIRH2-mediated polyubiquitination. PD-L1 N-terminal domains Ig-V and Ig-C but not the PD-L1 C-terminal tail co-IP’d with Chk2 and restored Chk1 inhibitor (Chk1i) treatment resistance. Tumor PD-L1 expression correlated with Chk1i sensitivity in 44 primary human small cell lung cancer cell lines, implicating tumor-intrinsic PD-L1 as a DDRi response biomarker. In WT mice, genetic PD-L1 depletion but not surface PD-L1 blockade with αPD-L1, sensitized immunotherapy-resistant, BRCA1-WT 4T1 tumors to PARP inhibitor (PARPi). PARPi effects were reduced on PD-L1 KO tumors in RAG2KO mice indicating immune-dependent DDRi efficacy. Tumor PD-L1 depletion, likely due to impaired DDR, enhanced PARPi induced tumor-intrinsic STING activation (e.g., p-TBK1, CCL5) suggesting potential to augment immunotherapies.ConclusionsWe challenge the prevailing surface PD-L1 paradigm and establish a novel mechanism for cell-intrinsic PD-L1 control of the DDR and gene product expression. We identify therapeutic vulnerabilities from tumor PD-L1 depletion utilizing small molecule DDRi currently being tested in clinical trials. Data could explain αPD-L1/DDRi treatment resistance. Intracellular PD-L1 could be a pharmacologically targetable treatment target and/or response biomarker for selective DDRi alone plus other immunotherapies.ReferencesTopalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287, doi:10.1038/nrc.2016.36 (2016).Clark CA, et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis and autophagy in ovarian cancer and melanoma. Canres 0258.2016 (2016).Gupta HB et al. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer. 1, 16030 (2016).Zhu H, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16:2829–2837, doi:10.1016/j.celrep.2016.08.032 (2016)Wu B, et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer. Oncoimmunology 7:e1500107, doi:10.1080/2162402X.2018.1500107 (2018)Liang J, et al. Verteporfin inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol Res 8:952–965, doi:10.1158/2326-6066.CIR-19-0159 (2020)


2019 ◽  
Vol 21 (6) ◽  
pp. 786-799 ◽  
Author(s):  
Mwangala Precious Akamandisa ◽  
Kai Nie ◽  
Rita Nahta ◽  
Dolores Hambardzumyan ◽  
Robert Craig Castellino

2017 ◽  
Vol 33 (4) ◽  
pp. 373-388 ◽  
Author(s):  
Samantha Corrà ◽  
Riccardo Salvadori ◽  
Leonardo Bee ◽  
Vito Barbieri ◽  
Maddalena Mognato

2013 ◽  
Vol 2 ◽  
Author(s):  
Rakesh Kumar ◽  
Nobuo Horikoshi ◽  
Mayank Singh ◽  
Arun Gupta ◽  
Hari S. Misra ◽  
...  

2009 ◽  
Vol 187 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Jeffrey R. Skaar ◽  
Derek J. Richard ◽  
Anita Saraf ◽  
Alfredo Toschi ◽  
Emma Bolderson ◽  
...  

Human SSB1 (single-stranded binding protein 1 [hSSB1]) was recently identified as a part of the ataxia telangiectasia mutated (ATM) signaling pathway. To investigate hSSB1 function, we performed tandem affinity purifications of hSSB1 mutants mimicking the unphosphorylated and ATM-phosphorylated states. Both hSSB1 mutants copurified a subset of Integrator complex subunits and the uncharacterized protein LOC58493/c9orf80 (henceforth minute INTS3/hSSB-associated element [MISE]). The INTS3–MISE–hSSB1 complex plays a key role in ATM activation and RAD51 recruitment to DNA damage foci during the response to genotoxic stresses. These effects on the DNA damage response are caused by the control of hSSB1 transcription via INTS3, demonstrating a new network controlling hSSB1 function.


2005 ◽  
Vol 45 (2-3) ◽  
pp. 188-205 ◽  
Author(s):  
Gregory S. Akerman ◽  
Barry A. Rosenzweig ◽  
Olen E. Domon ◽  
Chen-An Tsai ◽  
Michelle E. Bishop ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document