Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System

2018 ◽  
Vol 102 (3) ◽  
pp. 619-626 ◽  
Author(s):  
Annalisa Patriarca ◽  
Charles Fouillade ◽  
Michel Auger ◽  
Frédéric Martin ◽  
Frédéric Pouzoulet ◽  
...  
Livestock ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 196-201
Author(s):  
John F Mee ◽  
Rhona Ley

Postmortem examinations can be a useful diagnostic tool in farm animal medicine; however, they are often avoided in general practice because of a lack of appropriate facilities and expertise/familiarity with techniques. This article describes the setting up of a basic facility to allow general practitioners to perform postmortem examinations of calves, small ruminants and other small animals, e.g. poultry.


Tomography ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 39-54
Author(s):  
Veerle Kersemans ◽  
Stuart Gilchrist ◽  
Philip Danny Allen ◽  
Sheena Wallington ◽  
Paul Kinchesh ◽  
...  

Standardisation of animal handling procedures for a wide range of preclinical imaging scanners will improve imaging performance and reproducibility of scientific data. Whilst there has been significant effort in defining how well scanners should operate and how in vivo experimentation should be practised, there is little detail on how to achieve optimal scanner performance with best practices in animal welfare. Here, we describe a system-agnostic, adaptable and extensible animal support cradle system for cardio-respiratory-synchronised, and other, multi-modal imaging of small animals. The animal support cradle can be adapted on a per application basis and features integrated tubing for anaesthetic and tracer delivery, an electrically driven rectal temperature maintenance system and respiratory and cardiac monitoring. Through a combination of careful material and device selection, we have described an approach that allows animals to be transferred whilst under general anaesthesia between any of the tomographic scanners we currently or have previously operated. The set-up is minimally invasive, cheap and easy to implement and for multi-modal, multi-vendor imaging of small animals.


2008 ◽  
Vol 87 ◽  
pp. 149-165 ◽  
Author(s):  
Elena Lopez-Martin ◽  
Julio C. Bregains ◽  
F. J. Jorge-Barreiro ◽  
J. L. Sebastián-Franco ◽  
E. Moreno-Piquero ◽  
...  
Keyword(s):  

2020 ◽  
Vol 130 (1) ◽  
pp. 195-204
Author(s):  
Cas Jorissen ◽  
Eric Paillet ◽  
Jan Scholliers ◽  
Peter Aerts ◽  
Jana Goyens

Abstract Small animals face a large challenge when running. A stable head is key to maintenance of a stable gaze and a good sense of self-motion and spatial awareness. However, trunk undulations caused by the cyclic limb movements result in involuntary head movements. Hence, the head needs to be stabilized. Humans are capable of stabilizing their head up to 2–3 Hz, but small animals run at cycle frequencies that are up to six times higher. We wondered how natural selection has adapted their head stabilization control. We observed that the relative contributions of vision, on the one hand, and vestibular perception and proprioception, on the other hand, remain the same when lizards undergo fast or slow body undulations in an experimental set-up. Lizards also maintain a short phase lag at both low and high undulation frequencies. Hence, we found no indication that they use a different control mechanism at high frequencies. Instead, head stabilization probably remains possible owing to faster reflex pathways and a lower head inertia. Hence, the intrinsic physical and neurological characteristics of lizards seem to be sufficient to enable head stabilization at high frequencies, obviating the need for evolutionary adaptation of the control pathways. These properties are not unique to lizards and might, therefore, also facilitate head stabilization at high frequencies in other small, fast animals.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
O.L. Krivanek ◽  
J. TaftØ

It is well known that a standing electron wavefield can be set up in a crystal such that its intensity peaks at the atomic sites or between the sites or in the case of more complex crystal, at one or another type of a site. The effect is usually referred to as channelling but this term is not entirely appropriate; by analogy with the more established particle channelling, electrons would have to be described as channelling either through the channels or through the channel walls, depending on the diffraction conditions.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Author(s):  
T.S. Savage ◽  
R. Ai ◽  
D. Dunn ◽  
L.D. Marks

The use of lasers for surface annealing, heating and/or damage has become a routine practice in the study of materials. Lasers have been closely looked at as an annealing technique for silicon and other semiconductors. They allow for local heating from a beam which can be focused and tuned to different wavelengths for specific tasks. Pulsed dye lasers allow for short, quick bursts which can allow the sample to be rapidly heated and quenched. This short, rapid heating period may be important for cases where diffusion of impurities or dopants may not be desirable.At Northwestern University, a Candela SLL - 250 pulsed dye laser, with a maximum power of 1 Joule/pulse over 350 - 400 nanoseconds, has been set up in conjunction with a Hitachi UHV-H9000 transmission electron microscope. The laser beam is introduced into the surface science chamber through a series of mirrors, a focusing lens and a six inch quartz window.


Sign in / Sign up

Export Citation Format

Share Document