Formation of high carbohydrate and acylation condensed lignin from formic acid-acetic acid-H2O biorefinery of corn stalk rind

2021 ◽  
Vol 161 ◽  
pp. 113165
Author(s):  
Qingzhi Ma ◽  
Zhiyong Li ◽  
Lifang Guo ◽  
Huamin Zhai ◽  
Hao Ren
1964 ◽  
Vol 47 (5) ◽  
pp. 801-803 ◽  
Author(s):  
Peter John Andrellos ◽  
George R Reid

Abstract Three confirmatory tests have been devised to identify aflatoxin B±. Portions of the isolated toxin are treated with formic acid-thionyl chloride, acetic acid-thionyl chloride, and trifluoroacetic acid, respectively, and aliquots of the three fluorescent reaction products are spotted on thin-layer chromatography plates. Standards treated with each of the three reagents, plus an untreated standard, are spotted on the same plate, and after development the spots are compared under ultraviolet light.


1965 ◽  
Vol 43 (8) ◽  
pp. 2254-2258 ◽  
Author(s):  
C. C. Lee ◽  
Edward W. C. Wong

endo-Norbornyl-2-d p-bromobenzenesulfonate was synthesized and the isotope effects, as measured by kH/kD, were determined over a range of temperatures for solvolyses in 30% water – 70% dioxane, acetic acid, and formic acid. Values of kH/kD are of the order of 1.20. The data appear to indicate slightly higher isotope effects as the solvents are changed from aqueous dioxane to acetic acid to formic acid, as well as somewhat higher isotope effects at lower temperatures. Possible mechanistic implications of these results are presented. Relative titrimetric acetolysis rates, kexo/kendo, at different temperatures, and enthalpies and entropies of activation for these acetolyses are evaluated and discussed.


Author(s):  
Sebastian Ponce ◽  
Stefanie Wesinger ◽  
Daniela Ona ◽  
Daniela Almeida Streitwieser ◽  
Jakob Albert

AbstractThe selective oxidative conversion of seven representative fully characterized biomasses recovered as secondary feedstocks from the agroindustry is reported. The reaction system, known as the “OxFA process,” involves a homogeneous polyoxometalate catalyst (H8PV5Mo7O40), gaseous oxygen, p-toluene sulfonic acid, and water as solvent. It took place at 20 bar and 90 °C and transformed agro-industrial wastes, such as coffee husks, cocoa husks, palm rachis, fiber and nuts, sugarcane bagasse, and rice husks into biogenic formic acid, acetic acid, and CO2 as sole products. Even though all samples were transformed; remarkably, the reaction obtains up to 64, and 55% combined yield of formic and acetic acid for coffee and cocoa husks as raw material within 24 h, respectively. In addition to the role of the catalysts and additive for promoting the reaction, the influence of biomass components (hemicellulose, cellulose and lignin) into biogenic formic acid formation has been also demonstrated. Thus, these results are of major interest for the application of novel oxidation techniques under real recovered biomass for producing value-added products. Graphical abstract


2021 ◽  
pp. 118256
Author(s):  
Enchen Yang ◽  
Hanbo Zheng ◽  
Tao Yang ◽  
Wei Yao ◽  
Zijian Wang ◽  
...  

2021 ◽  
Vol 41 (1) ◽  
pp. 60-67
Author(s):  
E. K. Ndelekwute ◽  
H. O. Uzegbu ◽  
K. U. Amaefule ◽  
C. O. Okereke ◽  
B. I. Umoh

A Six week study was carried out to investigate effect of different organic acids (OAs) fed through drinking water on carcass yield and internal organs weight of broiler chickens. The OAs were acetic acid (AA) butyric acid (BA), citric acid (CA) and formic acid (FA). One hundred and fifty (150) day old AborAcre-plus chicks were used. There were five treatments. Treatment 1 which served as control (CON) consumed water with no organic acid, while treatments 2,3, 4 and5 respectively were offered drinking water treated with 0.25% acetic acid (AA), butyric acid (BA), citric acid (CA) and formic acid (FA). Each treatment was replicated three times each having 10 birds arranged in completely randomized design (CRD). Feed and water were offered ad libitum. Results showed that dressed carcass weight and breast weight were improved by all the organic acids. While only AA positively influenced the thigh weight, all the OAs drinking water fed resulted to smaller drumstick compared to the CON. Feeding of AA, BA and FA through drinking water increased (PSO.05) deposition of abdominal fat. Weight of pancreas, small intestine, caecum and large intestine was significantly (P<0.05) higher in CON. The gall bladder was significantly (P<0.05) bigger in all the OA groups. Conclusively, OAs could be fed through the drinking water for improved percentage carcass yield, breast meat and larger gall bladder and invariably bile volume


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dong Tian ◽  
Yiyi Chen ◽  
Fei Shen ◽  
Maoyuan Luo ◽  
Mei Huang ◽  
...  

Abstract Background Peroxyacetic acid involved chemical pretreatment is effective in lignocellulose deconstruction and oxidation. However, these peroxyacetic acid are usually artificially added. Our previous work has shown that the newly developed PHP pretreatment (phosphoric acid plus hydrogen peroxide) is promising in lignocellulose biomass fractionation through an aggressive oxidation process, while the information about the synergistic effect between H3PO4 and H2O2 is quite lack, especially whether some strong oxidant intermediates is existed. In this work, we reported the PHP pretreatment system could self-generate peroxyacetic acid oxidant, which mediated the overall lignocellulose deconstruction, and hemicellulose/lignin degradation. Results The PHP pretreatment profile on wheat straw and corn stalk were investigated. The pathways/mechanisms of peroxyacetic acid mediated-PHP pretreatment were elucidated through tracing the structural changes of each component. Results showed that hemicellulose was almost completely solubilized and removed, corresponding to about 87.0% cellulose recovery with high digestibility. Rather high degrees of delignification of 83.5% and 90.0% were achieved for wheat straw and corn stalk, respectively, with the aid of peroxyacetic acid oxidation. A clearly positive correlation was found between the concentration of peroxyacetic acid and the extent of lignocellulose deconstruction. Peroxyacetic acid was mainly self-generated through H2O2 oxidation of acetic acid that was produced from hemicellulose deacetylation and lignin degradation. The self-generated peroxyacetic acid then further contributed to lignocellulose deconstruction and delignification. Conclusions The synergistic effect of H3PO4 and H2O2 in the PHP solvent system could efficiently deconstruct wheat straw and corn stalk lignocellulose through an oxidation-mediated process. The main function of H3PO4 was to deconstruct biomass recalcitrance and degrade hemicellulose through acid hydrolysis, while the function of H2O2 was to facilitate the formation of peroxyacetic acid. Peroxyacetic acid with stronger oxidation ability was generated through the reaction between H2O2 and acetic acid, which was released from xylan and lignin oxidation/degradation. This work elucidated the generation and function of peroxyacetic acid in the PHP pretreatment system, and also provide useful information to tailor peroxide-involved pretreatment routes, especially at acidic conditions. Graphical abstract


2010 ◽  
Vol 10 (2) ◽  
pp. 3937-3974 ◽  
Author(s):  
S. R. Tong ◽  
L. Y. Wu ◽  
M. F. Ge ◽  
W. G. Wang ◽  
Z. F. Pu

Abstract. A study of the atmospheric heterogeneous reactions of formic acid, acetic acid, and propionic acid on dust particles (α-Al2O3) was performed at ambient condition by using a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reactor. From the analysis of the spectral features, observations of carboxylates formation provide strong evidence for an efficient reactive uptake process. Comparison of the calculated and experimental vibrational frequencies of adsorbed carboxylates establishes the bridging coordinated structures on the surface. The uptake coefficients of formic acid, acetic acid, and propionic acid on α-Al2O3 particles are (2.07±0.26)×10−3, (5.00±0.69)×10−3, and (3.04±0.63)×10−3, respectively (using geometric area). Besides, the effect of various relative humid (RH) on this heterogeneous reactions was studied. The uptake coefficients of monocarboxylic acids on α-Al2O3 particles increase initially (RH<20%) and then decrease with the increased RH (RH>20%) which was due to the effect of water on carboxylic acids solvation, particles surface hydroxylation, and competition on reactive site. On the basis of the results of experimental simulation, the mechanism of heterogeneous reaction of dust with carboxylic acids at ambient condition was discussed. The loss of atmospheric monocarboxylic acids due to reactive uptake on available mineral dust particles can be competitive with homogeneous loss pathways, especially in dusty urban and desertified environments.


Sign in / Sign up

Export Citation Format

Share Document